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ABSTRACT
Efficient join query execution remains a key challenge in mod-
ern database systems. Although a recent method, Robust Predicate
Transfer (RPT), improves robustness against suboptimal join orders,
it introduces significant overhead from redundant filter creation
and inefficient data scanning. We present RPT+ that addresses these
issues through three key improvements. First, we propose asym-
metric transfer plans to reduce redundant Bloom filter construc-
tions. Second, we design cascade filters to improve data scanning
efficiency by enabling both block-level skipping and tuple-level
filtering. Third, we introduce dynamic pipelines to allow runtime
filter creation and transfer plan adjustment. We implemented RPT+
in DuckDB (v1.3.0) and evaluated it across multiple benchmarks,
including the Join Order Benchmark (JOB), SQLStorm, TPC-H,
and Appian. Compared to the baseline DuckDB, RPT+ achieves
speedups of 1.47× on JOB, 1.28× on SQLStorm, 1.10× on TPC-H,
and 1.01× on Appian. Importantly, it avoids the significant perfor-
mance regressions observed with the original RPT. These results
demonstrate that RPT+ not only improves query performance but
also maintains the robustness of RPT across diverse workloads.

PVLDB Reference Format:
Yiming Qiao, Peter Boncz, and Huanchen Zhang. Robust Predicate Transfer
with Dynamic Execution. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/embryo-labs/dynamic-predicate-transfer.

1 INTRODUCTION
Joins dominate the execution time of analytical queries, making
their optimization critical for database performance [19, 35]. A cen-
tral challenge is the join ordering problem, where an optimizer
must search a vast plan space, often relying on inaccurate car-
dinality estimates [8, 17, 40]. Despite decades of research, query
optimizers frequently select poor join orders, resulting in execution
plans that are significantly slower than optimal [4, 16, 20, 34, 43].
To address this issue for acyclic queries, Robust Predicate Transfer
(RPT) builds on the Yannakakis algorithm [39] to ensure an efficient,
join-order-robust execution [45].

The RPT algorithm operates in two phases: transfer and join.
In the transfer phase, Bloom filters (BFs) on the join attributes are
propagated across the join tree in forward and backward passes.
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Figure 1: Performance Overhead of RPT in DuckDB v1.3.0 –
RPT incurs significant overhead in data scanning and Bloom filter
construction for many queries.

This process guarantees that all the irrelevant tuples from the base
tables are eliminated. The subsequent join phase then executes the
actual join operations on these reduced tables.

Although RPT is asymptotically optimal, it has constant-factor
overheads that can slow down many queries. These shortcomings
stem from two main issues. First, RPT overlooked the high cost of
Bloom filter (BF) construction. Without auxiliary data structures
such as Hyperloglog sketches [9], determining the optimal BF size
requires a full data scan to count distinct keys, which materializes
intermediate results and disrupts execution pipelines [14]. Second,
RPT ignores the data layout on storage, which is critical for efficient
data scanning [23, 41]. Because the BFs operate at the tuple level,
they cannot be used to skip entire data blocks or row groups [13].
Figure 1 compares the performance breakdown of the original RPT
and DuckDB on a few queries from the Join Order Benchmark
(JOB) [17] and SQLStorm [26]. In these queries, RPT introduced
large overheads due to unnecessary BF creation and data scanning.

In this paper, we propose RPT+ that improves the original RPT
in three aspects. Our first contribution is the Asymmetric Transfer
Plan (ATP), designed to minimize Bloom filter (BF) overhead. This
approach modifies the shape of the join tree during RPT’s transfer
phase and employs distinct transfer plans for the forward and back-
ward passes. This ensures that BFs are created and transferred only
when necessary, cutting down on filter construction and probing
costs drastically. We provide theoretical proofs of ATP’s correctness
and optimality.

Our second contribution is the Cascade Filter. It combines a light-
weight min-max filter with a more precise Bloom filter (BF). The
min-max filter can quickly eliminate row groups (i.e., storage data
blocks) that do not contain relevant data, while the BF then operates
on the remaining data at the tuple level. This hierarchical approach,
i.e., transitioning from a fast, coarse-grained filter to a fine-grained
one, significantly improves the overall filtering efficiency.

Finally, we introduce Dynamic Pipeline to make filtering more
robust. This assesses predicate selectivity andmaterialization size at
runtime to decide whether building a Cascade Filter is worthwhile.
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If the filter is observed to be non-selective and/or very large, its
construction is abandoned, removing the sink for its materialization.
This runtime decision-making avoids the overhead of propagating
useless filters and reduces materialization overhead.

We implemented RPT+ in DuckDB v1.3.0, a state-of-the-art in-
process analytical database, and evaluated its performance across
several real-world benchmarks: TPC-H [6], the Join Order Bench-
mark (JOB) [17], the Appian Benchmark [2], and SQLStorm [26].
Compared to baseline DuckDB, RPT+ achieves geometric mean
speedups of 1.17× on TPC-H, 1.47× on JOB, 1.01× on Appian, and
1.28× on SQLStorm. Most importantly, RPT+ significantly reduces
performance regressions observed with RPT. It eliminates all re-
gressions in Appian and substantially reduces regressions across
the 13,308 queries in SQLStorm.

2 BACKGROUND
In this section, we provide essential background on the Yannakakis
Algorithm [39] and Robust Predicate Transfer (RPT) [33, 38, 45].

2.1 Yannakakis Algorithm
The Yannakakis algorithm [39] is a provably optimal join algorithm
for acyclic queries. It is instance-optimal, guaranteeing a time com-
plexity of 𝑂 (𝑁 +𝑂𝑈𝑇 ), where 𝑁 is the total input size and 𝑂𝑈𝑇
is the final output size. The algorithm’s key idea is to aggressively
pre-filter tuples that will not participate in the final result [10]. This
is done via a series of semi-join reductions. A semi-join (𝑅⋉𝑆) keeps
only the tuples in the left relation (𝑅) that have a matching join
key in the right relation (𝑆), i.e., 𝑅 ⋉ 𝑆 = 𝜋attr(𝑅) (𝑅 ⊲⊳ 𝑆). Despite
its theoretical elegance, the Yannakakis algorithm is rarely used in
practice due to its inefficient implementations.

2.2 Robust Predicate Transfer
The recent Robust Predicate Transfer (RPT) [38, 45] makes the
Yannakakis algorithm practical in real database systems. For each
semi-join 𝑅 ⋉ 𝑆 , RPT filters 𝑅 using a Bloom filter (BF) built on 𝑆 .
To preserve the theoretical robustness of the Yannakakis algorithm,
RPT applies the LargestRoot algorithm [45] for planning the BFs’
propagation. A query is modeled as a join graph 𝐺 (𝑉 , 𝐸), where
an edge 𝑒 ∈ 𝐸 connecting tables 𝑅, 𝑆 ∈ 𝑉 has a weight equal to the
number of shared join attributes. RPT then constructs a maximum
spanning tree T (from 𝐺) rooted at the table with the highest
cardinality by repeatedly selecting the highest-weight edge that
connects a node in the tree to a node outside (break ties by choosing
the larger table). T dictates a two-pass BF propagation, i.e., a leaves-
to-root forward pass and a root-to-leaves backward pass, to fully
reduce the tables before the subsequent join phase of RPT.

However, RPT lacks a specific tie-breaking rule when a candidate
node shares maximum-weight edges with multiple nodes in T . This
choice significantly impacts tree topology and subsequent perfor-
mance. Consider query JOB 3a (the query is 𝛼-acyclic) in Figure 2.
We define an Equivalence Class as a set of attributes from different
tables that are connected by equality join conditions (e.g., the blue
and green attributes in Figure 2). T initializes with the largest ta-
ble, movie_info, and attaches movie_keyword. Ambiguity arises
when adding title, which shares join attributes with both exist-
ing nodes. Connecting title to the leaf node (movie_keyword)

yields a deeper tree ( Figure 2b), whereas connecting it to the root
(movie_info) results in a broader structure (Figure 2c). In practice,
RPT’s implementation defaults to the former, favoring deeper trees
to maximize early filtering during the forward pass.

3 ASYMMETRIC TRANSFER PLAN
This section introduces the Asymmetric Transfer Plan (ATP), a novel
approach that uses different tree structures for the forward and
backward passes in RPT. We first analyze the distinct purpose of
each pass and then prove the correctness and optimality of ATP.

3.1 Motivation
A key weakness of RPT is that it does not account for equivalence
relationships among join keys [18]. This leads to two major inef-
ficiencies, redundant filters and oversized filters, as illustrated by
the two transfer plans in Figure 2. In Figure 2(b), the BF created
from movie_keyword in Step 6 is redundant. Because the tables in
Steps 4 and 6 share the same equivalence class (green), the filter
from Step 4 could be applied directly to title. In Figure 2(c), Step
3 is suboptimal because it builds a BF from movie_keyword before
that table is filtered. A better approach would be to first apply the
BF from title (created in Step 2) to movie_keyword. This would
shrink movie_keyword, allowing for a much smaller BF to be cre-
ated subsequently. Therefore, an ideal transfer plan for the query
in Figure 2 would combine the forward pass of Plan 1 with the
backward pass of Plan 2. However, RPT’s current design is limited
to a symmetric transfer plan, where the forward and backward
passes follow the same join tree.

3.2 Different Roles of Forward/Backward Passes
Our key observation is that RPT’s forward and backward passes
have fundamentally different goals. The forward pass is responsi-
ble for collecting filtering information from all tables, while the
backward pass distributes this collected information back to them.
This distinction means they benefit from different tree shapes: a
deep, chaining tree is ideal for the forward pass, whereas a wide,
broadcast tree is best for the backward pass.

A chaining forward pass is superior because it avoids creating
oversized BFs by filtering one table before using it to build the next
BF. Consider the example at the top of Figure 3, which shows a
join over five tables 𝑇1, . . . ,𝑇5 on a common join key. Let 𝐾𝑖 be the
set of distinct join key values in 𝑇𝑖 . The forward pass starts at 𝑇1
and transfers 𝐾1 (as a Bloom filter) to table 𝑇2, where 𝑇2 refines the
valid key set to 𝐾1 ∩ 𝐾2. This transfer process continues (red lines)
and eventually narrows down the set of valid keys (i.e., keys that
must appear in the final output) to

⋂︁5
𝑗=1 𝐾𝑗 .

Similarly, a broadcast backward pass is more efficient because
it allows the final, collected filter to be built only once and reused
across all tables in the same equivalence class. In contrast, RPT’s
iterative backward pass (blue lines at the top of Figure 3) is wasteful.
It redundantly constructs the same membership filter containing
values in

⋂︁5
𝑗=1 𝐾𝑗 for multiple tables. The ideal approach, shown

at the bottom of Figure 3, is to construct this final filter just once
and simply broadcast it to all relevant tables.
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Columns in the same equivalence class share a color

Forward Pass:

1. keyword → movie_keyword

2. title → movie_keyword

3. movie_keyword → movie_info

Backward Pass:

4. movie_info → movie_keyword

5. movie_keyword → keyword

6. movie_keyword → title

Forward Pass:

1. keyword → movie_keyword

2. title → movie_info

3. movie_keyword → movie_info

Backward Pass:

4. movie_info → movie_keyword & title

5. movie_keyword → keyword

RPT Transfer Plan 1: Creates Unnecessary BF RPT Transfer Plan 2: Creates Oversized BF

Forward Pass (From Leaves to Root):

1. info_type → movie_info_idx

2. title → movie_keyword

3. movie_info_idx → movie_keyword

4. keyword → movie_keyword

Backward Pass (From Root to Leaves):

5. movie_keyword → title & movie_info_idx

6. movie_keyword → keyword

7. movie_info_idx → title

Same Color Indicates an Equivalence Class of Join Keys
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Forward Pass (From Leaves to Root):

1. info_type → movie_info_idx

2. movie_info_idx → title

3. title → movie_keyword

4. keyword → movie_keyword

Backward Pass (From Root to Leaves):

5. movie_keyword → title

6. movie_keyword → keyword

7. title → movie_info_idx

8. movie_info_idx → info_type
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(a) Join Graph (b) Transfer Plan 1 (c) Transfer Plan 2
Figure 2: Join Tree/Transfer Plan Candidates in RPT for the Query JOB 3a - There are two transfer plan candidates for the query: in
Plan 1, RPT connects the table title to the node movie_keyword; while in Plan 2, it is connected to the root node movie_info.

Table 1 Table 2 Table 3 Table 4 Table 5

Redundant Creation of Identical Filters: K1∩K2∩K3∩K4 ∩K5

K1 K1∩K2 K1∩K2∩K3 K1∩K2∩K3∩K4

Asymmetric Transfer Plan

Original (Symmetric) Transfer Plan

Table 1 Table 2 Table 3 Table 4 Table 5

Reusable Filter

Table 1 Table 2 Table 3 Table 4 Table 5

Reusable Filter

Figure 3: Transfer Plans for a Simple Join Query – RPT’s back-
ward pass (blue) constructs redundant membership filters. Instead,
a single filter can be reused across all tables.

3.3 Correctness of Asymmetric Transfer Plan
Our proposed algorithm for generating an asymmetric transfer plan,
detailed in Algorithm 1, is a modification of the original Largest-
Root algorithm. While it follows the same node insertion order,
the key innovation is to apply distinct tie-breaking policies for
the forward and backward passes. The algorithm constructs two
maximum spanning trees on the weighted join graph, both rooted
at the largest relation. It iteratively adds new tables by selecting
the highest-weight connecting edge and uses the table size as the
tie-breaker. The novelty lies in how the insertion point is chosen.
For the forward tree, a new node is attached to the valid parent with
the greatest depth, a policy that minimizes fan-out and promotes
a deep, chaining structure. Conversely, for the backward tree, the
new node is attached to the parent with the smallest depth, which
maximizes fan-out and results in a wide, broadcast structure.

We now demonstrate that our asymmetric transfer plan still
guarantees the full-reduction property for acyclic queries. First,
consider the simple base case of a single attribute equivalence class
where any two tables are connected in the join graph. Here, the
forward pass collects “survived” keys at the root of its tree T𝑓 , and
the backward pass distributes them from the root of its tree T𝑏 . Full
reduction is guaranteed as long as both trees share the same root.
Since Algorithm 1 explicitly selects the single largest table as the
root for both T𝑓 and T𝑏 , this property holds.

Next, consider an acyclic query with𝑚 > 1 equivalence classes:
𝑄 = {𝛼1, . . . , 𝛼𝑚}. Here, an 𝛼 can represent a Compound Equiva-
lence Class (denoted as ∩𝑘

𝑖=1𝛼𝑖 ) where a single join condition spans

Algorithm 1: Asymmetric Transfer Plan
Input: Join graph 𝐺 (𝑉 , 𝐸)
Output: Forward tree T𝑓 , backward tree T𝑏

1 T𝑓 ← ∅, T𝑏 ← ∅, R ← 𝑉 , R′ ← {𝑅largest};
2 while R′ ≠ R do
3 Find 𝑅 ∈ R \ R′ with 𝑒 = {𝑅, 𝑆} ∈ 𝐸 (𝐺), 𝑆 ∈ R′ with the

largest weight. Break ties by selecting the largest 𝑅;
4 Find 𝑆𝑓 ∈ R′ and insert 𝑒𝑓 = {𝑅, 𝑆𝑓 } ∈ 𝐸 (𝐺) into T𝑓 .

Break ties by selecting 𝑆𝑓 with the greatest tree depth;
5 Find 𝑆𝑏 ∈ R′ and insert 𝑒𝑏 = {𝑅, 𝑆𝑏 } ∈ 𝐸 (𝐺) into T𝑏 .

Break ties by selecting 𝑆𝑏 with the smallest tree depth;
6 R′ ← R′ ∪ {𝑅};
7 return T𝑓 , T𝑏 ;

multiple (basic) equivalence classes (e.g., 𝑆.𝑎 = 𝑅.𝑎 AND 𝑆.𝑏 = 𝑅.𝑏).
We prove full reduction for our algorithm by showing that each
class 𝛼 ∈ 𝑄 achieves full reduction independently. This involves
analyzing the induced subgraph T𝛼 for each class 𝛼 , which consists
of all tables in the main tree T that contain attributes from 𝛼 . Since
T is a join tree, its induced T𝛼 is connected and is a tree. Because
Algorithm 1 preserves the same node insertion order when building
the forward tree T𝑓 and the backward tree T𝑏 , they must share the
same root (i.e., the first inserted node in 𝛼). Therefore, the proof of
full reduction for each class 𝛼 reduces to the base case above.

3.4 Optimality of Chaining Forward Tree
We then demonstrate ATP’s optimality: for a fixed table insertion
order, ATP generates tree topologies that minimize total filter cre-
ation and probing costs. We analyze the decoupled forward and
backward passes independently to prove, among all tree shapes
consistent with the insertion order, the resulting trees T𝑓 and T𝑏
minimize their respective costs (Section 3.4 and Section 3.5). This
section establishes that the chaining forward tree minimizes costs
by avoiding oversized filters. We derive this proof first for single
equivalence classes before generalizing to multiple classes.

3.4.1 Single Attribute Equivalence Class. Consider an acyclic join
over 𝑛 tables involving a single equivalence class. Let 𝑁𝑖 and 𝐾𝑖
denote the cardinality and the distinct join keys in Table 𝑇𝑖 (assum-
ing 𝑁𝑖 ≫ |𝐾𝑖 |). We define per-tuple cost 𝐶probe and 𝐶build for BF
probing and insertion. Given a join tree T , let S𝑖 denote the tables
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Table 3Table 3

Table 5Table 5

Table 8Table 8

Table 6Table 6

Table 7Table 7

Table 3Table 3

Table 5Table 5

Table 8Table 8

Table 6Table 6

Table 7Table 7

Reduced Fan-out by One

Table 4Table 4
Table 4Table 4

Table 9Table 9

Table 9Table 9

Chain A Chain B

Merged Chain

Fan-out Node (Each Child is a Chain)

Any Tree can be transformed into a chaining in at most n – 1 merge 
steps, each reducing the forward cost, where n is the number of nodes.

Figure 4: Leaf Chain Merge Operation - Given a node with
multiple children, each forming a chain, we merge two chains by
attaching one to the end of the other.

in the subtree rooted at𝑇𝑖 , and let C𝑖 denote𝑇𝑖 ’s direct children. We
define the join key intersection in subtree 𝑆𝑖 as 𝐾 (S𝑖 ) =

⋂︁
𝑇𝑗 ∈S𝑖 𝐾𝑗 .

During the forward pass, filters from C𝑖 reduce 𝑇𝑖 to keys in 𝐾 (S𝑖 ).
Assuming a uniform distribution of join keys, the cardinality of𝑇𝑖

after filtering is |𝑇 ′
𝑖
| = |𝐾 (S𝑖 ) |/|𝐾𝑖 | ·𝑁𝑖 . Notably, |𝑇 ′𝑖 | depends solely

on S𝑖 , independent of the subtree’s internal topology. Therefore,
the total forward cost (building + probing) for 𝑇𝑖 in T is:

𝐿(𝑇𝑖 ) = |𝐾 (S𝑖 ) |/|𝐾𝑖 | · 𝑁𝑖 ·𝐶build + |C𝑖 | · 𝑁𝑖 ·𝐶probe
We then prove that a chaining structure minimizes this cost by
showing that transforming an arbitrary tree into a chain via iterative
“leaf merging” strictly reduces the total cost. Consider a node 𝑇𝑝
with child chains 𝐴 and 𝐵 (Figure 4). Merging 𝐵 onto the leaf 𝑇𝑎 of
chain 𝐴 affects only the subtree rooted at𝑇𝑝 . For any internal node
𝑇𝑗 ∈ 𝐴, the subtree expansion implies a smaller key intersection
(|𝐾 (S𝑗 ) | → |𝐾 (S′𝑗 ) |), thus reducing filter-building costs:

Δ𝐿(𝑇𝑗 ) = ( |𝐾 (S′𝑗 ) | − |𝐾 (S𝑗 ) |)/|𝐾𝑗 | · 𝑁 𝑗 ·𝐶build ≤ 0

For 𝑇𝑎 , its build cost decreases due to the subtree expansion, but it
gains a child (Δ𝐿(𝑇𝑎) ≤ 𝑁𝑎 ·𝐶probe). On the other hand,𝑇𝑝 reduces
its probing cost by losing a child (Δ𝐿(𝑇𝑝 ) = −𝑁𝑝 · 𝐶probe). Since
Algorithm 1 prioritizes larger tables (𝑁𝑝 ≥ 𝑁𝑎), the net probing
cost decreases, yielding:

Δ𝐿(𝑇𝑎) + Δ𝐿(𝑇𝑝 ) ≤ (𝑁𝑎 − 𝑁𝑝 ) ·𝐶probe ≤ 0.

Consequently, the aggregate cost change is negative:

Δ𝐿 = Δ𝐿(𝑇𝑝 ) + Δ𝐿(𝑇𝑎) +
∑︂

𝑇𝑗 ∈𝐵,𝑇𝑗≠𝑇𝑎

Δ𝐿(𝑇𝑗 ) ≤ 0.

Therefore, repeatedly applying the merge operations yields a cost-
minimal chaining tree.

3.4.2 Multiple Attribute Equivalence Classes. We generalize the
analysis to queries with𝑚 > 1 attribute equivalence classes, 𝑄 =

{𝛼1, . . . , 𝛼𝑚}. We show that the optimal forward tree organizes
tables participating in each equivalence class 𝛼 into a chain, and
these chains are linked via “bridge tables”, i.e., the root of the subtree
induced by each class.

While the probing cost for each table 𝑇𝑖 remains consistently
|C𝑖 | ·𝑁𝑖 ·𝐶probe, the build cost must account for filters frommultiple
join key classes (take Table 2 in Figure 5 as an example). Let 𝑄𝑖

denote the equivalence classes in which table 𝑇𝑖 participates. Let
𝐾𝛼
𝑗
be the set of distinct values of 𝛼 in 𝑇𝑗 . Let 𝐾𝛼 (S𝑖 ) be the union

of distinct values from all tables participated in class 𝛼 ∈ 𝑄𝑖 in

Base TableBase Table Bridge TableBridge Table Induced TreeInduced Tree

T10T9

T8

T5T6

T3 T2 T4

T7

T1

T10

T9

T8

T5T6

T3

T4

T2

T1

T7

(a) Multi-class Forward Tree (b) After Transformation

Figure 5: Chaining Forward Tree - In a join query with multiple
attribute equivalence classes, the participating tables in each equiv-
alence class form a chain.

T1T1

T4T4 T3T3 T6T6T2T2

T7T7T5T5

T8T8 T9T9 T10T10

  Create  One  Filter

  Create Two Filters

  Create One Filters

Create Filters Only at Root/Bridge Tables — One per Equivalence Class.

Base TableBase Table Bridge TableBridge TableBase Table Bridge Table

Figure 6: Broadcast Backward Tree - For each attribute equiva-
lence class, a filter is created only once.

the subtree S𝑖 , i.e., 𝐾𝛼 (S𝑖 ) = ∪𝑇𝑗 ∈S𝑖 , 𝛼∈𝑄 𝑗
𝐾𝛼
𝑗
. Assuming statistical

independence between attributes, the total forward cost compounds
multiplicatively across all participating classes:

𝐿multi (𝑇𝑖 ) = (
∏︂
𝛼∈𝑄𝑖

|𝐾𝛼 (S𝑖 ) |
|𝐾𝛼

𝑖
| ) · 𝑁𝑖 ·𝐶build + |C𝑖 | · 𝑁𝑖 ·𝐶probe

This cost function also implies that 𝑇𝑖 ’s cost depends solely on the
subtree set S𝑖 and its child count |C𝑖 |.

To prove structural optimality, we treat each class 𝛼 ∈ 𝑄 indepen-
dently. Let T𝛼 be the subgraph induced by tables participating in
𝛼 . Because the query is acyclic, T𝛼 must be connected [18, 39, 45],
which forms a subtree rooted at the bridge table (the first table in T
containing 𝛼). Since each T𝛼 involves a single key class, its optimal
structure is a chain (as proven in Section 3.4.1). Therefore, trans-
forming every induced subgraph T𝛼 into a chain while preserving
connectivity at the bridge tables yields the global optimal tree (an
example is provided in Figure 5(b)).

3.5 Optimality of Broadcast Backward Tree
Wenext show that the broadcast backward treeminimizes backward-
pass costs by eliminating redundant filter construction. After the
forward pass, the root holds 𝐾𝛼 (Sroot) for each equivalence class
𝛼 ∈ 𝑄 . The backward pass then distributes this set of globally valid
join values from the root and bridge tables to all other nodes.

3.5.1 Single Attribute Equivalence Class. For a single equivalence
class, the optimal transfer plan employs a star topology (i.e., depth
𝑑 = 2) where the root connects directly to all the other 𝑛 − 1 tables.
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This requires constructing only a single BF at the root that is reused
for all 𝑛 − 1 table probes. In contrast, any topology with depth
𝑑 > 2 requires 𝑑 − 2 additional intermediate filter constructions to
propagate the join value intersection without reducing any prob-
ing overhead. Thus, the broadcast topology minimizes the total
backward-pass cost.

3.5.2 Multiple Attribute Equivalence Classes. When queries involve
multiple equivalence classes, global connectivity is not guaranteed.
Let’s first assume that connected tables share exactly one attribute
(Figure 6). We treat each class 𝛼 ∈ 𝑄 as an induced subtree T𝛼

𝑏
.

A single BF is constructed at the subtree’s root and broadcast to
all its descendants. This strategy minimizes overhead by ensuring
exactly one filter creation per class and that each table probes a
BF at most once. This optimality extends to multiple equivalence
classes (where join conditions span multiple attributes). Filters are
generated exclusively at root or bridge tables. Consider a query
over tables 𝑆, 𝑅,𝑇 with conditions inducing classes 𝛼1 = {𝑎, 𝑏, 𝑒}
and 𝛼2 = {𝑐, 𝑑}. This yields three potential compound equivalence
classes, for constructing BFs: 𝛼1, 𝛼2, and 𝛼1 ∩ 𝛼2. Our broadcast
backward tree avoids redundant filter constructions. For example, if
no table contains 𝛼2 in isolation, no separate BF is built for the table.
Regarding probing, because every non-root table must receive filter
data at least once, the theoretical lower bound is 𝑛 − 1 probes. We
achieve this bound by ensuring every table is probed exactly once
and confirm the optimality of the broadcast backward pass.

3.6 Attribute Correlation and Predicates
The forward pass assumes attribute independence and therefore
collects predicate information from all tables. However, data corre-
lation often renders specific transfers redundant. Consider a PK–FK
join without local selection. a PK-derived BF cannot reduce the FK
side due to referential integrity. FK-to-PK filtering is often ineffec-
tive as well because fact tables typically span the full join attribute
domain [29, 37]. Consequently, PK–FK joins without selective pred-
icates gain negligible benefit from predicate transfer [37, 45] (refer
to Section 6.2 Appian Benchmark). Because analytical workloads
typically involve selective predicates in practice, an optimization
is to restrict filter construction to tables that are effectively filtered,
i.e., those containing selective predicates. We implement this opti-
mization via the Dynamic Pipeline in Section 5.

4 CASCADE FILTER
In this section, we introduce the concept of Cascade Filters and
a simple yet effective implementation with min-max and Bloom
filters to accelerate semi-join reductions.

4.1 Concept & Implementation
A cascade filter applies increasingly selective filters, starting with
lightweight, coarse-grained pruning before computationally expen-
sive, fine-grained checks. Unlike standalone BFs, this multi-stage
approach discards the bulk of irrelevant data early, minimizing the
load on subsequent more expensive filters.

Our implementation pairs a min–max filter for block-level prun-
ing (i.e., discarding row groups with disjoint ranges [46]) with a BF
for tuple-level probabilistic pruning. This design generalizes the
hash join’s “filter-then-expand” model [4]. It extends the original
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Figure 7: Transfer with Cascade Filters - We show the transfer
paths Table 1→ Table 2, Table 2→ Table 3, and Table 3→ Table 1
& 2 across tables. Matching colors indicate the same cascade filter.

single exact hash check into a coordinated three-layer pruning:
global range pruning (min–max), probabilistic pruning (BF), and ex-
act hash filtering. Cascade filters support multi-hop, bi-directional
propagation across the query plan. As shown in Figure 7, filters
generated in one pipeline are probed in subsequent ones (denoted
using matching colors). To maximize selectivity, min-max filters are
pushed to the deepest possible operators. Creating a cascade filter
acts as a pipeline breaker (materialized operator), and downstream
pipelines cannot begin loading data to probe until the corresponding
filters are constructed. Notably, the inter-pipeline materialization
cost significantly outweighs the overhead of filter construction.

4.2 Min-Max Sensitivity to Bloom Filters
Unlike classical Side-Information Passing (SIP) [11], which applies
filters locally, our multi-hop transfer can accumulate the filters’
one-sided errors. False positives (FPs) in early-stage BFs artificially
expand the min–max ranges propagated to subsequent hops. While
minor in single-hop SIP, these errors degrade the pruning efficiency
of downstream cascade filters.

For example, a few BF false positives can expand the min–max
range of an empty-result join from ∅ to a wide interval and conse-
quently compromise the pruning efficiency. Empirically, improving
BF accuracy yields a 4× speedup on JOB query 07c by preventing
such range inflation. Formally, consider a domain 𝑇 = {1, . . . , 𝑛}.
Values inside [𝑎, 𝑏] are always kept, while values outside survive as
FPs with probability 𝑝 . For𝑛 ≫ 1/𝑝 , the expected min-max range of
the survivor set 𝑆 is approximately: E[max(𝑆) −min(𝑆)] ≈ 𝑛− 2/𝑝 .
This shows that unless 𝑝 is very small, the expected range spans
nearly the entire domain, rendering min–max pruning ineffective.

Consequently, the BF in our cascade filters must maintain a
very low FPR across multiple hops, not merely a low probe cost.
Lang et al. [14] show that optimal performance depends on both
probe cost and the amount of work a filter avoids. In our setting,
the latter is crucial so that accuracy therefore takes precedence
over raw throughput. Guided by these considerations, we adopt the
Cache-Sectorized Bloom Filter (CSBF) [14]. CSBFs align filter blocks
with cachelines and distributing hash bits across sectors, achieving
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Figure 8: Dynamic Cascade-Filter Creation - The default plan
has two pipelines, connected by a cascade-filter creator. If the es-
timated selectivity 𝜆 is high (e.g., 95%), Pipeline 1 is halted, filter
creation is skipped, and its operators are moved into Pipeline 2.

throughput comparable to register-blocked BFs [22] while main-
taining an FPR close to classic BFs.

5 RUNTIME FILTER SKIPPING
To preclude inefficient cascade filter constructions, RPT+ intro-
duces the Dynamic Pipeline. A dynamic pipeline performs runtime
checks to adaptively abort the construction of filters for tables with
predicates that are found to be ineffective.

5.1 Identifying Efficiently Filtered Tables
Because cascade filters constructed on tables without selective pred-
icates rarely justify their materialization cost (cf. Section 3.6), ATP
restricts the forward transfer plan to tables with predicates, plus
bridge tables (cf. Section 3.4). This forward-pass heuristic trades the
theoretical guarantee of full semi-join reduction for significantly
reduced overhead. However, the presence of a predicate does not
guarantee utility; a high pass rate (e.g., 99%) makes the transfer
overhead outweigh its benefit. Because classic cardinality estima-
tion is often unreliable, we introduce Dynamic Pipeline to monitor
selectivity at runtime and adaptively abort filter construction if the
observed filter selectivity exceeds a viable threshold.

5.2 Dynamic Pipelines
The Dynamic Pipeline leverages runtime progress estimation [5, 15]
to modulate execution. By comparing the cardinality at the pipeline
source against that at the sink (i.e., materialization point), the
system calculates real-time filter selectivity. Filter construction
is aborted if (1) selectivity is too high or (2) the estimated result
size exceeds the memory budget. This also eliminates the down-
stream probing of the abandoned filters. This ensures that RPT+
only builds useful filters and avoids the overhead of materializing
large intermediate results.

This runtime approach is both practical and robust. The neces-
sary tuple counts are already tracked by many modern analytical
databases [25, 27, 28] (displayed in EXPLAIN ANALYZE) for query
progress monitoring [5, 15]. The runtime estimation offers superior

Algorithm 2: Dynamic Bloom-Filter Creation
Input: Pipeline 𝑃 , table row count 𝑁total

1 Initialize: 𝑁scan ← 0, 𝑁recv ← 0, decided← false;
2 while 𝑃 produces a chunk 𝐶 do
3 𝑁scan ← 𝑁scan + |𝐶 |;
4 𝑁recv ← 𝑁recv + |PassFilter (𝐶) |;
5 if ¬𝑑𝑒𝑐𝑖𝑑𝑒𝑑 and 𝑁recv ≥ 𝛾 then
6 decided← true
7 Est. selectivity: 𝜆 ← 𝑁recv/𝑁scan;
8 Est. materialized size: 𝑆 ← 𝜆 ·𝑁total · avg_tuple_size;
9 if 𝜆 > 𝜏sel and 𝑁scan/𝑁total < 𝜏prog then
10 return Abandon BF and Merge Pipelines;
11 if 𝑆 > 𝑀avail then
12 return Abandon BF and Merge Pipelines;

13 Materialize PassFilter (𝐶) locally;
14 return Build BF from all materialized tuples;

accuracy to static, histogram-based optimizer estimates [24, 35, 44].
Dynamically adjusting the query plan is also lightweight. It has
been proposed in streaming for optimizing tuple routing [3]. Be-
cause each cascade filter creation introduces a “pipeline breaker”,
abandoning a filter simply removes the sink that materializes tuples
and thereby undoes the pipeline-cut. This is a minor modification
that does not reorder any operators within the now-unified pipeline,
making the adjustment process fast and simple.

Our approach differs from Adaptive Query Execution (AQE) in
Databricks Photon [36]. Photon’s plan adaptiveness occurs only at
shuffle boundaries (i.e., pipeline breakers with disk-based synchro-
nization), which are after the full materialization, making statistics
gathering and plan reoptimization straightforward. In contrast, Dy-
namic Pipeline targets analytical engines built around streaming
pipelines where explicit pipeline breakers are uncommon. Dynamic
Pipeline operates while the materializing pipeline runs to adjust the
transfer logic on-the-fly, avoiding materialization cost that Photon
cannot. This enables the fine-grained adaptivity that streaming
analytical engines without shuffle-style materialization require.

5.3 Dynamic Cascade-Filter Creation
We now describe how RPT+ dynamically decides whether a cas-
cade filter should be built, following Algorithm 2. We illustrate the
process using the example in Figure 8.

In Figure 8(a), the default plan consists of two pipelines: Pipeline 1
scans the base table and applies a series of filter predicates, min–max
filters, and received cascade filters; Pipeline 2 contains the opera-
tors that consume the intermediate table produced by Pipeline 1. A
selectivity checker is injected immediately before the cascade-filter
creator to observe how many tuples survive all upstream filters. It
maintains two counters during execution: 𝑁scan (tuples scanned
from the table) and 𝑁recv (tuples that pass all upstream filters).
Once at least 𝛾 tuples have reached the cascade-filter creator, we
estimate the overall retained selectivity as 𝜆 = 𝑁recv/𝑁scan. This
measurement captures the combined filtering effect of all upstream
predicates without separately estimating each one.
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Figure 9: Selective Cascade-Filter Probing – start with a min-
max filter, then apply the 𝑖-th BF only if 𝜆𝑖/𝜆𝑖−1 < 𝜏stop . Here, BF
(ID = 1) is applied, while BF (ID = 2) is skipped.

A cascade filter is created only when the retained selectivity is
sufficiently low. If the estimated selectivity is high (𝜆 > 𝜏sel ) and
the scan is still in its early stage (𝑁scan/𝑁total < 𝜏prog), Algorithm 2
abandons filter creation. The second condition prevents canceling
late in the scan, when most of the materialization cost has already
been incurred. In this example, Pipeline 1 halts early, the cascade-
filter creator is skipped, and its operators are merged into Pipeline 2.
Execution then proceeds in Pipeline 2, as shown in Figure 8(b).

The algorithm also has a memory-safety check, matching the ma-
terialized operator shown in Figure 8. Since creating a cascade filter
requires materializing all tuples reaching the creator, the algorithm
estimates the materialized size 𝑆 . If this exceeds the memory budget
𝑀avail , the filter is similarly abandoned. If none of the abandonment
conditions are triggered, Pipeline 1 proceeds to materialize the re-
ceived tuples and builds the cascade filter as shown in Figure 8(a).
And Pipeline 2 continues with the local materialized data.

5.4 Selective Cascade-Filter Probing
Wenow introduce selective cascade filter probing in dynamic pipelines,
using an example in Figure 9. We can bypass probing optional fil-
ters with weak filtering ability, as they provide negligible pruning
benefits. By skipping these probes, we reduce the probing overhead
without compromising correctness.

Figure 9 gives an example of a pipeline with two BF probes.
Min-max filters, being lightweight and highly effective on sorted
columns, are always applied first. They eliminate entire row groups
outside the query range, ensuring that the data seen by subsequent
BFs is more representative, thereby stabilizing selectivity estimates.

Each BF-probing operator records two counters to estimate its
selectivity: one for the number of tuples entering the operator
and one for the number that pass through. After sampling, we
compute the ratio of out to in. If this ratio exceeds the stop threshold
(e.g., 0.95), we disable further probing of that filter. Disabling is
achieved by bypassing the BF operator entirely: all input tuples
are forwarded directly to the subsequent operators without any BF
lookup. Dynamic probing can be biased on sorted or nearly sorted
columns because clustered values make early selectivity samples
unrepresentative. Cascade filtering mitigates this by applying the
min–max filter before any BF probing. Sorted columns generate
tight row-group zonemaps, and the min–max filter prunes groups
that fall outside the desired range. BFs are then evaluated only on
the remaining groups, so the observed selectivity reflects the BF’s
true filtering power rather than ordering-induced skew.

In some cases, a BF-probing operator may lack a valid BF because
the creating the filter was abandoned by the dynamic pipeline
mechanism described earlier. When this occurs, the probe is always
deemed ineffective and is disabled. To allow dependent pipelines
to proceed without deadlock, we have marked the canceled BF-
creation pipeline as “finished,” as explained in Section 5.3.

5.5 Implementation Details
For the dynamic pipeline, we receive 𝛾 = 100K tuples to estimate
the selectivity. For the selective filter creation, we set 𝜏sel = 0.35,
𝜏prog = 0.6, and𝑀avail = 64 GB. For the selective filter probing, we
set 𝜏stop = 0.9. We use sequential sampling instead of random sam-
pling because random sampling requires random access patterns
that disrupt streaming execution and incur significant overhead. Se-
quential sampling, by contrast, integrates naturally into the pipeline
with minimal cost.

For the cascade filter, because BF probing is compute-bound,
we implement CSBFs using a vectorized approach following [14]:
elements are processed in batches, enabling the compiler to auto-
generate SIMD instructions. Each CSBF block is aligned to a 64-byte
cache line and subdivided into 32-bit sectors. For each element, we
compute a 64-bit hash and split it into two 32-bit values, allowing
the use of 32-bit gather instructions (e.g., VPGATHERDD) instead of
64-bit gathers (e.g., VPGATHERQD). To achieve a low false-positive
rate, we allocate 20 bits per key and use 7 hash functions, so each
key sets 7 bits in the filter. Our CSBF implementation achieves a
probe latency of 2.48 cycles/tuple with an FPR of 6.1 × 10−5.

6 END-TO-END EVALUATION
In this section, we integrate RPT+ into DuckDB v1.3.0 [25] and
evaluate its end-to-end performance. RPT+ is to reduce the impact
of suboptimal join orders, so workloads dominated by large joins are
the most suitable evaluation targets. These workloads are analytical
in nature and best served by columnar, vectorized systems. DuckDB
is a state-of-the-art in-process OLAP engine with columnar storage,
vectorized execution, and basic SIP [11], making it a representative
system for the evaluation.

Benchmarks. We use four benchmarks in the evaluation: TPC-
H (SF=100) [6], Join Order Benchmark (JOB) [17], Appian Bench-
mark [2], and SQLStorm [26]. TPC-H is a widely used decision
support benchmark consisting of 22 analytical queries over a syn-
thetic business schema. We omit four queries that do not involve
join operations. The JOB consists of 113 multi-join queries based
on the IMDB dataset, offering a challenging and diverse workload.
The Appian Benchmark is an industry-driven workload designed to
reflect real-world query patterns and data distributions. SQLStorm,
built using Large Language Models (LLMs), utilizes the Stack Over-
flow Math database with over 18,000 queries. It greatly expands the
scope of SQL functionality and query constructions.

Baselines. We compare RPT+ with the following four baselines:
(1) NoFT : A modified version of DuckDB v1.3.0 [25] with all filter
transfer mechanisms disabled. It executes pure hash joins without
any pruning. (2) DDB: An unmodified DuckDB release v1.3.0 that
supports min-max filter transfer on join keys from the hash-table
build side to the probe side, but does not support Bloom filters
(BFs). (3) SIP : A modified DuckDB implementation from [30], which
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Table 1: Query Distribution by Speedup Range for RPT

Speedup #Queries (%) Avg. Speedup Avg. Latency (ms)

0–0.7 555 (4.2%) 0.62× 82.32→133.01
0.7–0.9 3185 (23.9%) 0.81× 208.61→248.75
0.9–1.1 6323 (47.5%) 0.99× 782.53→788.91
1.1–5.0 3061 (23.0%) 1.85× 377.70→235.49
5.0–100.0 179 (1.3%) 9.09× 841.04→78.45
>100.0 5 (0.0%) 127.48× 4515.65→35.30

Table 2: Query Distribution by Speedup Range for RPT+

Speedup #Queries (%) Avg. Speedup Avg. Latency (ms)

0–0.7 24 (0.2%) 0.61× 69.54→114.58
0.7–0.9 247 (1.9%) 0.85× 639.31→734.16
0.9–1.1 9124 (68.6%) 1.01× 570.86→567.76
1.1–5.0 3389 (25.5%) 1.89× 405.74→260.58
5.0–100.0 512 (3.8%) 8.93× 401.93→40.44
>100.0 12 (0.1%) 226.29× 3200.65→14.40
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Figure 10: Speedup Distribution Comparison —We compare the percentile-wise query speedups of RPT and RPT+ over the baseline.

realizes the Sideways Information Passing [11], enabling both min-
max and Bloomfilter (BF) transfer during hash joins. (4) RPT: Robust
Predicate Transfer [45], which constructs a join tree using the
LargestRoot algorithm and transfers only BFs along the tree.

Experimental Setup. We run experiments using our in-house
server with 512 GB of DDR5 main memory at 4800 MHz and a 1 TB
Intel® SSD D5-P5530. The server is equipped with two sockets of
Intel® Xeon® 8474C 2.1 GHz processors (48 cores), each capable of
supporting 96 threads. We use Debian GNU/Linux 12 and GCC 12.2
with -O3 enabled. Experiments are conducted with eight threads
unless stated otherwise.

6.1 RPT+ Significantly Reduces Regressions
We first study how RPT+ improves robustness by mitigating RPT-
induced regressions. While RPT provides pruning benefits, it also
causes noticeable slowdowns on a non-trivial subset of queries.
RPT+ is designed to address this. By analyzing the distribution of
speedups over RPT, we show that RPT+ not only improves overall
performance but, more importantly, suppresses the tail of negative
outliers. For this analysis, we use the SQLStorm benchmark, which
provides a large and diverse workload. Due to its query complexity,
few systems can execute all queries successfully [26]. Following
the guidance in the original paper, we terminate any query that
exceeds 10 seconds. Out of 18,251 queries, 13,308 finish successfully,
2,837 fail, and 2,106 time out. We compare per-query speedups over
DuckDB across percentiles.

The results in Figure 10 show the distribution of speedups of
RPT+ and RPT relative to DuckDB. The x-axis represents query per-
centiles and the y-axis shows speedup. The green and blue curves
correspond to RPT and RPT+, and the red dashed line indicates
the baseline. RPT+ greatly reduces query regressions. Both figures
show two characteristic tails: the left tail reflects regressions and
the right tail reflects improvements. RPT produces noticeable slow-
downs (speedup < 0.9×) for at least 28% of queries, while RPT+

lowers this to 2.1%. On the improvement side, RPT+ attains higher
speedups for more queries than RPT, reaching up to 500×.

For a more detailed comparison, Table 1 and Table 2 report the
per-query speedup distributions. Two observations stand out. First,
RPT+ includes more queries with high speedups and substantially
reduces the number of queries in the [0.7, 0.9) interval. Second,
queries that are slow under DuckDB often achieve larger gains.
These queries are typically slow because of suboptimal join orders,
and RPT+ is designed to correct such cases. In contrast, fast queries,
whose join orders are already good, show smaller changes and
account for most of the remaining regressions.

6.2 RPT+ Improves Average Performance
We next show that RPT+ not only reduces regressions but also im-
proves average performance across several benchmarks. We com-
pare RPT+ against NoFT, DuckDB, SIP, and RPT. All experiments
use 8 threads. Each query is executed once for cache warm-up fol-
lowed by five measured runs, and we record the average execution
time. Unless noted otherwise, per-query speedups are computed by
taking the geometric mean of five speedups, each defined relative
to the corresponding baseline run.

To characterize selectivity patterns across workloads, we execute
all queries in each benchmark and record the selectivity of every
predicate. Aggregating these measurements yields a selectivity
distribution for each benchmark, as shown in Figure 12. TPC-H and
JOB containmostly highly selective predicates. Appian is dominated
by non-selective predicates with limited filtering power. SQLStorm
exhibits a mixture of both highly and weakly selective predicates.

Figure 11 reports results on four benchmarks with distinct data
and workload characteristics. Across all of them, RPT+ delivers
consistently strong performance. (1) TPC-H. Most columns follow
uniform distributions, making min–max filters ineffective. NoFT
and DuckDB therefore perform similarly. RPT+ outperforms RPT
mainly due to lower filter-construction overhead. (2) JOB. Many
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Figure 11: Performance Overview - We report the geometric mean speedup of all methods over DuckDB v1.3.0 across benchmarks with
diverse data distributions and workloads. NoFT: no filter transfer; DDB: transfers only min-max filters; SIP: transfers both min-max and BFs.
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Figure 12: Selectivity Distribution - We measure predicate se-
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queries produce tiny intermediate results, sometimes only a few
tuples or even empty. Min–max filters are thus highly effective
at skipping entire row groups, and methods that use them out-
perform those that do not (e.g., NoFT, RPT). (3) Appian. Very few
base-table rows can be filtered, leaving little pruning opportunity.
Skipping filter transfer is ideal. RPT+ keeps overhead minimal in
this non-prunable setting due to dynamic pipelines. (4) SQLStorm.
This workload reflects real-world data distributions. Both min–max
filters and BFs help. RPT+ balances pruning benefit against transfer
cost and achieves the best overall trade-off.

6.3 Transfer Plan Comparison
We conduct an apples-to-apples comparison to evaluate the ad-
vantage of ATP over LargestRoot, as discussed in Section 3. We
compare their speedups and memory usage across the base ver-
sions, their Cascade-Filter variants, and the ATP+/LargestRoot+
extensions that incorporate dynamic pipelines. All benchmarks
run with 8 threads. For each query, we record execution time and
peak memory usage, and report the geometric-mean speedup and
average peak memory consumption per benchmark.

Figure 13 summarizes the results. First, the ATP family outper-
forms the LargestRoot family, benefiting from its more effective
transfer plans. Second, Appian contains almost no selective predi-
cates, so predicate transfer adds time and memory overhead; dy-
namic pipelines address this effectively. Third, on JOB, methods
without cascade filters show higher memory usage because dis-
rupted min–max transfer causes additional data to be loaded; Cas-
cade filters enable row-group skipping and restore normal usage.
We emphasize that the goal of RPT+ is to avoid the regressions seen
in prior approaches; performance gains are a secondary benefit.

6.4 Per-Query Analysis on JOB
To further compare ATP and LargestRoot, we analyze per-query
performance on the JOB. We study four methods: ATP, LargestRoot,

ATP+, and LargestRoot+, where the latter two extend their base
versions with cascade filters and dynamic pipelines. JOB contains
33 query templates, and we group queries by template. For each
template, we report the average execution time over all instantiated
queries (i.e., different parameterizations of the same template).

Figure 14 shows that both ATP and LargestRoot introduce regres-
sions (Queries 8, 10, and 24) because they prevent the row-group
skipping. Inserting a cascade-filter–creation operator on the probe
side introduces a materialization point that breaks the pipeline.
Instead of waiting for min–max filters from the build side to en-
able early skipping, the split pipeline begins scanning before the
filter is ready, resulting in unnecessary work. Adding cascade fil-
ters restores row-group skipping for both ATP+ and LargestRoot+.
Moreover, ATP+ inserts fewer BFs, which further reduces regres-
sions (Queries 18, 25, 30, and 31).

6.5 Sensitivity of Dynamic Pipeline Threshold
We evaluate the effect of the give-up threshold 𝜏sel in the dynamic
pipeline. The threshold decides whether a cascade filter is created: if
the fraction of surviving tuples exceeds the threshold, we build the
cascade filter; otherwise, we skip it. Lower thresholds drop filters
more aggressively, reducing overhead but also limiting pruning. We
present results on the JOB and Appian benchmarks, as the other
workloads show similar trends.

Figure 15 shows the speedup of RPT+ over DuckDB under differ-
ent thresholds. On JOB, moderate thresholds (e.g., 0.1–0.3) preserve
useful filters and yield higher speedups, whereas very low thresh-
olds (e.g., 0.0) discard almost all filters and hurt performance. Note
that some cascade filters are created before selectivity sampling;
this is intentional because filters on small tables are typically bene-
ficial, so a threshold of 0.0 still produces a few BFs. In the Appian
benchmark, most predicates are not selective, therefore cascade
filters offer little pruning benefit. Cascade filters built on such tables
not only fail to reduce data but also add construction and probing
overhead, making them unprofitable to keep.

6.6 Case Study
We then conduct a detailed analysis of three queries, JOB-10a, JOB-
07c and query 15651 & 13615 in SQLStorm.

6.6.1 [Asymmetric Transfer Plan] JOB-10a. Query 10a joins
seven tables, where RPT incurs substantial BF–building overhead
due to a suboptimal transfer plan. We compare LargestRoot and
ATP, recording total execution time, cascade-filter build time, data
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scan time, the number of created BFs, and the total number of
rows inserted into them. As shown in Figure 16, ATP outperforms
LargestRoot, because LargestRoot creates an unnecessary BF on the
second-largest table, which has no filter predicate; this cascade filter
provides no pruning benefit and adds significant probing overhead.

6.6.2 [Cascade Filters] JOB-07c. The BF accuracy is crucial for
Query 07c in JOB. Ten cascade filters are created for this query,
indexed by their creation order. We vary the bits-per-key and mea-
sure how many tuples are pruned by row-group skipping and by
min–max/BF filtering. We also record the number of items inserted
into each BF in the cascade. As shown in Figure 17, high BF accuracy
(24 bits per key) enables better row-group skipping on cast_info,
yielding about a 4× speedup compared to the low-accuracy setting
(16 bits per key). The key reason is that cast_info receives cascade
filters 4 and 6 during scanning. Under the high-accuracy setting, BF
6 is very small and effective (14 items), whereas under low accuracy
it contains 378 items and loses pruning power. We also observe that
early BFs insert the same number of items across configurations,
while later BFs diverge due to accumulated false-positive errors.
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Figure 16: Cascade Filter Creation Overhead in Query JOB-
10a - We compare the total execution time, BF creation time, and
data scan time of the LargestRoot and ATP, along with the number
of BFs created and their total contained item count.

6.6.3 [Dynamic Pipeline] SQLStorm 15651 & 13615. Query 15651
in SQLStorm joins Post and Users, filters on Post.PostTypeId =
1, orders by ViewCount, and returns the top 10 rows. The query
has two pipelines: building a hash table on Users, and probing
Post with a top-𝑘 optimization that avoids scanning tuples with
larger ViewCount. A cascade-filter creator inserted into the probing
pipeline splits this pipeline and disables the top-𝑘 optimization,
causing RPT+ (without the dynamic pipeline) to run 3× slower
than DuckDB. With the dynamic pipeline enabled, RPT+ detects
that the predicate on Post offers little pruning and skips filter
construction, eliminating the regression. Query 13615 is the worst-
performing case for RPT+, with a 0.37× speedup. It has the same
issue as Query 15651, except that the dynamic pipeline deems the
predicate selective and does not cancel cascade-filter creation. This
leads to unnecessary scanning and a performance drop.

7 MICROBENCHMARK EVALUATION
In this section, we use synthetic workloads to evaluate each com-
ponent of RPT+. We first compare ATP with LargestRoot [45], then
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assess the effectiveness of cascade filters, and finally analyze the
sensitivity of dynamic pipelines.

7.1 Transfer Plan on Synthetic Data
We consider a natural join over tables𝑇1, . . . ,𝑇𝑛 . Each table contains
1M rows and two columns: id (ranging from 1 to 1M) and info
(a fixed 100-byte string). The join order follows a left-deep plan:
hash tables are built for 𝑇1, . . . ,𝑇𝑛−1, and 𝑇𝑛 probes each of them.
We apply filter predicates to the first𝑚 tables𝑇1, . . . ,𝑇𝑚 , with each
predicate independent and having a selectivity of 0.5. Concretely,
the predicate on 𝑇𝑖 checks the 𝑖-th bit of id: (id ≫ (𝑖 − 1)) &1 =

1. We vary 𝑛 from 6 to 18 and 𝑚 from 0 to 3, and we measure
the execution time of each query. We compare four strategies: (1)
LargestRoot; (2) ATP; (3) ATP (No Focus), which includes all tables
in the forward pass; and (4) the vanilla DuckDB v1.3.0.

Figure 18 presents the results. First, ATP (No Focus) outperforms
LargestRoot because it creates fewer filters in the backward pass.
As more tables carry predicates, the filtered tables shrink, reducing
backward filter-creation cost and narrowing the gap. Second, ATP
sharply reduces predicate transfer overhead, even when no tables
have filter predicates. As shown in Figure 18, ATP bounds transfer
overhead while still guaranteeing full reduction for each table,
allowing it to outperform the baseline.

To further study the effect of filter predicate selectivity on trans-
fer plans, we fix the number of tables to eight and apply filter
predicates to three of them, varying selectivity from 0.1 to 1. Fig-
ure 19 shows the results. With low selectivity (e.g., 0.1), transferring
BFs adds little overhead and ATP provides modest gains. As the
selectivity increases, execution times rise for all plans because filter
transfer becomes less beneficial. Overall, ATP incurs the lowest
overhead. The results also highlight the importance of disabling
ineffective cascade filters.

7.2 Min-Max Sensitivity to Bloom Filters
We next evaluate how the block-level skipping performance of
cascade filters responds to BF accuracy. Consider a join query in-
volving 𝑛 = 10 tables 𝑇1, . . . ,𝑇10, with only two filter predicates:
𝑇1 .id % 2 = 0 and𝑇2 .id % 2 = 1, while the rest of the settings follow
those in Section 7.1. The join result of𝑇1 and𝑇2 is ∅, allowing us to

build a tight min-max filter for the remaining tables. However, false
positives from the BF can expand the generated min–max range.

We consider three BF variants: (1) 32-bit Register-blocked BF, (2)
64-bit Register-blocked BF [31], and (3) CSBF [13]. All BF variants
are implemented in a vectorized style. We use the ATP with each
of these BF variants to execute the query, recording the execution
time and the percentage of rows filtered by min-max filters. We
vary the bits per key to adjust the accuracy.

Figure 21 shows the results. First, the min-max range is signifi-
cantly affected by the number of bits per key. With fewer bits, BFs
generate more false positives, which degrade the performance of
the min-max filters. Second, the CSBF achieves higher accuracy
with the same memory usage compared to other BF variants. It
produces only 4 false positives when the number of bits per key
exceeds 35, while maintaining comparable speed. For these reasons,
we choose the cache-sectorized BF as our BF implementation.

7.3 Sensitivity of Dynamic Filter Probing
We quantify the performance impact of selective cascade-filter
probing. We reuse the join queries from Section 7.1, which perform
a natural join over 𝑇1, . . . ,𝑇𝑛 . A single predicate (id % 𝑁 = 1) is
applied to𝑇𝑛 , such that ATP creates a cascade filter that propagates
to all preceding tables. We vary𝑛 from 3 to 4 and adjust𝑁 to control
filter selectivity. We compare two static strategies: Always Probe
and Never Probe. As shown in Figure 20, always probing helps
when the filter is selective but introduces overhead when pruning
is weak, while never probing avoids overhead but forfeits potential
gains. These results underscore the need to probe adaptively. For
more complex queries, the threshold shifts rightward.We find that a
stop-probing threshold of 𝜏stop = 0.9 provides robust performance.

7.4 Sensitivity of Dynamic Filter Creation
We then evaluate the sensitivity of dynamic pipelines to correlated
queries. A correlated query contains filter predicates that are related
through join conditions. We construct a JOB query template that
retrieves films whose production country and actors’ birth country
are both X, where X is one of {USA, France, India, Italy, Japan}. We
also generate fully correlated queries. Two tables,𝑇1 and𝑇2, contain
identical data and receive the same filter predicate. We set predicate
selectivity to 0.05, 0.1, and 0.2, and use the selectivity to name the
queries in Figure 22. We further vary the give-up threshold 𝜏sel of
dynamic pipelines to assess their sensitivity.

Figure 22 reports the results. For the correlated queries con-
structed from JOB, predicate transfer remains effective. Although
the two correlated predicates do not prune each other’s tables, the
query joins several additional tables, and the transferred predicates
help prune along the join path. For the fully correlated queries,
predicate transfer provides no benefit: the two tables contain iden-
tical data and share identical predicates, so no additional pruning is
possible. In these cases, transferring predicates only adds overhead,
and a small give-up threshold helps avoid this unnecessary work.

8 RELATEDWORK
Sideways Information Passing (SIP) [11, 12] transfers predicates lo-
cally between join participants. Some cost-based optimizers [7, 42]
attempt to integrate SIP, but this enlarges the search space and
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cannot guarantee full reduction across all tables. Predicate Trans-
fer [38] was the first to transfer predicates globally, but it lacks
robustness to join ordering. Robust Predicate Transfer shows that
robust join performance is possible even without a cost-based opti-
mizer. However, it incurs many regressions in real-world workloads.
Parachute [30] reduces overhead for bidirectional information pass-
ing, but requires manual query rewriting and relies on offline statis-
tics. Yannakakis+ [33] identifies semi-joins theoretically redundant
in Yannakakis algorithm, but overlooks modern implementations
where semi-joins are replaced by BFs.

Besides BFs, OLAP systems use other runtime filters such as
min–max filters, hash filters, and bitmaps [1, 7, 25]. These filters
store coarse column summaries to quickly discard unlikely probe
tuples or irrelevant data blocks. Recent work such as Sieve [32]
extends this approach by using learned models to identify row
groups relevant to a range filter predicate.

The proposed RPT+ can also be applied to row-store systems.
Systems like PostgreSQL [21] support pipelined execution with ma-
terialization points, enabling integration of the dynamic pipeline.
However, row-stores must scan full tuples even when only a few
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columns are needed, which limits the pruning effectiveness of pred-
icate transfer. Column-stores are therefore better suited for large
analytical joins, where predicate transfer is more effective.

9 CONCLUSION
In this paper, we proposed RPT+, which improves query execution
by addressing two limitations of Robust Predicate Transfer (RPT):
unnecessary filter transfer and an inefficient filter design. RPT+
uses the asymmetric transfer plan to avoid oversized or redundant
filters while preserving full reduction guarantees. Cascade filters
strengthen both block-level and tuple-level pruning, and dynamic
pipelines detect inefficient predicates at runtime so that filters are
created only when beneficial. Compared to baseline DuckDB, RPT+
achieves geometric-mean speedups of 1.47× on JOB, 1.28× on SQL-
Storm, 1.17× on TPC-H, and 1.01× on Appian benchmark. Impor-
tantly, it avoids the substantial performance regressions observed
with the original RPT. These results show that RPT+ improves per-
formance while preserving robustness across diverse workloads.
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