
Data Chunk Compaction in Vectorized
Execution

Yiming Qiao, Huanchen Zhang

Institute for Interdisciplinary Information Sciences

Tsinghua University

Database System

January 16, 2026 1

A SQL Query Desired Data

Database System

January 16, 2026 1

A SQL Query Desired DataSQL Parser

Database System

January 16, 2026 1

A SQL Query Desired DataSQL Parser Plan Optimizer

Database System

January 16, 2026 1

A SQL Query Desired DataSQL Parser Plan Optimizer Plan Executor

Storage Engine

Database System

January 16, 2026 1

A SQL Query Desired DataSQL Parser Plan Optimizer Plan Executor

Storage Engine

We Focus on Improving the Query Plan Executor

Iterator Execution Model

January 16, 2026 2

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

SCAN

FILTER

PROJECT

Table Employee

Target > 30

Id, bonus

Iterator Execution Model

January 16, 2026 2

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

Next()

Next()

Next()

SCAN

FILTER

PROJECT

101 John 27

Iterator Execution Model

January 16, 2026 2

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

Next()

Next()

Next()

SCAN

FILTER

PROJECT

101 John 27

101 John 27

> 30? False

Iterator Execution Model

January 16, 2026 2

Next()

Next()

Next()

SCAN

FILTER

PROJECT

102 Alice 32

102 Alice 32

> 30? True

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

Iterator Execution Model

January 16, 2026 2

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

Next()

Next()

Next()

SCAN

FILTER

PROJECT

102 Alice 32

102 Alice 32 100

(target-30)*50

Iterator Execution Model

January 16, 2026 2

Next()

Next()

Next()

SCAN

FILTER

PROJECT

102 Alice 32 100

(target-30)*50SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

Iterator Execution Model

January 16, 2026 3

Next()

Next()

Next()

SCAN

FILTER

PROJECT

• Operators: SCAN, FILTER, PROJECT

• Iterator Interface:

• Open()

• Next() # “Next Tuple Please”

• Close()

Three Function Calls for

Processing a Single Tuple!

Buying Beer for a Party. The Silly Way.

January 16, 2026 4

An Intuitive Example From Peter Boncz

• Go to a store

• Take one beer bottle

• Pay at the register

• Return home

• Put the bottle in the fridge

• Repeat… 100 times!

= “tuple”

Buying Beer for a Party. A Better Way.

January 16, 2026 5

An Intuitive Example From Peter Boncz

• Go to a store

• Take two crates of beer (2x24!)

• Pay at the register

• Return home

• Put crates in the fridge

• Repeat 48x less!

= “vector”

48x less Function Calls for Processing a Single Tuple!

A Smart Way: Vectorized Execution

January 16, 2026 6

Next()

Next()

Next()

PROJECT

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

FILTER

SCAN

Process a Chunk of Tuples at

a Time, with Columnar Store

A Smart Way: Vectorized Execution

January 16, 2026 6

Next()

Next()

Next()

PROJECT

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

> 30?

False

True

True

False FILTER

SCAN

Process a Chunk of Tuples at

a Time, with Columnar Store

A Smart Way: Vectorized Execution

January 16, 2026 6

Next()

Next()

Next()

PROJECT

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

> 30?

False

True

True

False FILTER

SCAN

A Selection Vector/Bit Map is

used to Mark Tuples

102

103

Alice

Tom

32

31

100

50

(target-30)*50

Vectorized (In-Cache) Processing

January 16, 2026 7

Next()

Next()

Next()

PROJECT

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

> 30?

False

True

True

False FILTER

SCAN

• Vector-at-a-time:

• About 1000 tuples

• Processed in a tight loop:

• >, +, *

• Cache-friendly:

• A vector is sequentially accessed

Part 1

Data Chunk Compaction in Vectorized Execution

January 16, 2026

Small Chunk Problem

January 16, 2026 8

Next()

Next()

Next()

PROJECT

SELECT id,

 (target - 30) * 50 AS bonus

FROM employee

WHERE target > 30

105

106

107

108

John

Alice

Tom

Jack

27

32

31

29

> 30?

False

True

False

False FILTER

SCAN

106 Alice 32

Only one Tuple!

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

Buying Beer for a Party. An Accident.

January 16, 2026 9

We take two crates from the shop

but only put one bottle in the fridge!

Small Chunk Problem

January 16, 2026 10

SCAN FILTER PROJECT

Vector Size:

2048

Vector Size:

64

FILTER

Vector Size:

1

Vector Size:

1

Vector Size:

1

Vectorized Execution

(High Performance)

Iterator Execution

(Limited Performance)

Chunk Size (and Data Volume) is Greatly Reduced During Execution

Chunk-reducing Operators: Filter

January 16, 2026 11

FILTER

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

False

True

True

False

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

True

True

True

True

Chunk-reducing Operators: Filter

January 16, 2026 11

• Data Chunk Structure: Some Data Vectors + One Selection Vector

• Zero-copy Benefit

FILTER

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

False

True

True

False

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

True

True

True

True

Chunk-reducing Operators: Filter

January 16, 2026 11

FILTER

105

106

107

108

Tony

Jerry

Joy

Steve

22

21

25

31

True

True

True

True

105

106

107

108

Tony

Jerry

Joy

Steve

22

21

25

31

False

False

False

True

FILTER

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

False

True

True

False

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29

True

True

True

True

Chunk-reducing Operators: Filter

January 16, 2026 11

FILTER

105

106

107

108

Tony

Jerry

Joy

Steve

22

21

25

31

True

True

True

True

FILTER

101

102

103

104

John

Alice

Tom

Jack

27

32

31

29 True

True

True

False

102

103

108

-

Alice

Tom

Steve

-

31

31

32

-

True

True

True

True

If we compact them, we have additional memory copies;

otherwise, the vectorized execution suffers.

Chunk-reducing Operators: Hash Join

January 16, 2026 12

SELECT id, name, course_id,

FROM students, courses

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

False

True

True

False

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

-

Thu-201

Thu-101

-

Chunk-reducing Operators: Hash Join

January 16, 2026 12

SELECT id, name, course_id,

FROM students, courses

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

False

True

True

False

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

-

Thu-201

Thu-101

-

• Zero-copy Benefit: Reuse the data in the column id and name.

• Copy the New Vector Values into the Result Chunk.

Chunk-reducing Operators: Hash Join

January 16, 2026 13

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

False

True

True

False

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

-

Thu-201

Thu-101

-

True

False

False

False

101

102

103

104

John

Alice

Tom

Jack

Thu-401

-

-

-

False

True

False

True

101

102

103

104

John

Alice

Tom

Jack

-

Thu-328

-

Thu-824

One Full Chunk with 4 tuples

-> Three Small Chunks with 5 tuples!

Small Chunk Problem

January 16, 2026 14

SCAN HASH JOIN PROJECT

Vector Size:

2048

Vector Size:

64

HASH JOIN

Vector Size:

1

Vector Size:

1

Vector Size:

1

Vectorized Execution

(High Performance)

It takes 80% execution time

Chunk Size is Greatly Reduced During Execution, but Data Volume is

not Necessarily Reduced.

of Tuple:

4000
of Tuple:

4000

of Tuple:

8000

of Tuple:

8000

of Tuple:

16000

Small Chunk Problem

January 16, 2026 14

SCAN PROJECT

Vector Size:

2048

Vector Size:

64

Vector Size:

1

Vector Size:

1

Vector Size:

1

of Tuple:

4000
of Tuple:

4000

of Tuple:

8000

of Tuple:

8000

of Tuple:

16000

Given a Set of Data Chunks, Determine How to Compact Them to

Minimize the Total Execution Time (= compaction time + compute time).

Compact as More as Possible

• Full Compaction: compacts all chunks containing less than 2048

tuples.

January 16, 2026 15

Too Many Memory Copies!

Consider the Case Where a Tuple is in the Length of 1 MB…

SCAN PROJECT

Vector Size:

2048

Vector Size:

2048

Vector Size:

2048

Vector Size:

2048

Vector Size:

2048

Compact as Less as Possible

• No Compaction: no chunks are compacted

January 16, 2026 16

SCAN PROJECT

Vector Size:

2048

Vector Size:

64

Vector Size:

1

Vector Size:

1

Vector Size:

1

Too Many Small Chunks!

Consider the Case Where a Tuple is in the Length of 10 Bytes…

Compact Small Chunks Only

• Binary Compaction: chunks smaller than a predefined threshold are

compacted.

• A Trade-off Between Interpretation Overhead vs. Memory Copy

• The smaller the chunk, the greater the benefit from such compaction.

January 16, 2026 17

Choosing a Predefined Threshold is Difficult

Because it involves Database Design and Workload Characteristics.

Our Solution 1: Learning Compaction

January 16, 2026 18

• Learning Compaction: chunks smaller than a Learned threshold are compacted.

• Morsel-driven Parallelism: data is divided into chunks, with each thread

responsible for fetching and processing a chunk through the entire pipeline before

moving on to the next.

• Then, each chunk can serve as a sample for a learning algorithm

• Multi-armed Bandit Problem: select the optimal thresholds

Learning Compaction

January 16, 2026 19

• Learning Compaction: chunks smaller than a learned threshold are compacted.

SCAN PROJECT

Vector Size:

2048

Vector Size:

64

Vector Size:

1

Vector Size:

1

Vector Size:

1

𝛼1 𝛼2 𝛼3 𝛼4

• Multi-armed Bandit Problem: select each alpha from 0, 32, 64, 128, …, 2048

Learning Compaction

January 16, 2026 19

• Learning Compaction: chunks smaller than a learned threshold are compacted.

SCAN PROJECT

Vector Size:

2048

Vector Size:

64

Vector Size:

1

Vector Size:

1

Vector Size:

1

𝛼1 Feedback Reward for 𝛼1

Learning Compaction

January 16, 2026 19

• Learning Compaction: chunks smaller than a learned threshold are compacted.

SCAN PROJECT

Vector Size:

2048

Vector Size:

64

Vector Size:

1

Vector Size:

1

Vector Size:

1

𝛼2 Feedback Reward for 𝛼2

Learning Compaction

January 16, 2026 19

• Learning Compaction: chunks smaller than a learned threshold are compacted.

SCAN PROJECT

Vector Size:

2048

Vector Size:

64

Vector Size:

1

Vector Size:

1

Vector Size:

1

𝛼3 Feedback Reward

for 𝛼3

Our Solution 2: Logical Compaction

January 16, 2026 20

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

False

True

False

False

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

-

Thu-201

-

-

True

True

False

False

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-305

-

-

False

True

False

False

101

102

103

104

John

Alice

Tom

Jack

-

Thu-328

-

-

Observation: All three Result Chunks

Share the Same Left Vectors.

Logical Compaction

January 16, 2026 21

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

of Matches

1

3

0

0

Putting all generated tuples in one chunk seems to be a good idea, but

how to keep the zero-copy property of the Left Side Vectors…

Logical Compaction

January 16, 2026 22

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328

Requirements:

• Left-side vectors should be zero-copied.

• The mapping relationship between the left-side and right-side vectors should be maintained.

• The resulting chunk can be an input chunk to other operators.

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

True

True

True

True

Our Solution 2: Logical Compaction

January 16, 2026 23

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328

Our Solution: Selection Vector (SV) with Repeated Values:

• Left-side vectors have an SV.

• Right-side vectors have another SV.

HASH JOIN

101

102

103

104

John

Alice

Tom

Jack

0

1

2

3

0

1

1

1

0

1

2

3

Hash Probe the Result Chunk Again

January 16, 2026 24

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328 HASH JOIN

0

1

1

1

0

1

2

3

of Matches

1

2

0

1

101

102

103

104

John

Alice

Tom

Jack

1

1

1

1

SV1 SV2

SV3

SV3[i] = SV1[Hit[i]]

Hit

Hash Probe the Result Chunk Again

January 16, 2026 24

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328 HASH JOIN

0

1

1

1

0

1

2

3

of Matches

1

2

0

1

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328

1

1

1

1

0

1

1

3

SV4[i] = SV2[Hit[i]]

SV1 SV2

SV3

Hit
SV4

Hash Probe the Result Chunk Again

January 16, 2026 24

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328 HASH JOIN

0

1

1

1

0

1

2

3

of Matches

1

2

0

1

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328

1

1

1

1

0

1

1

3

Value1

Value2

Value3

Value4

0

1

2

3

SV1 SV2

SV3

Hit
SV4

Newly Added SV is

Always Dense

Hash Probe the Result Chunk Again

January 16, 2026 24

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328 HASH JOIN

0

1

1

1

0

1

2

3

of Matches

1

2

0

1

101

102

103

104

John

Alice

Tom

Jack

Thu-401

Thu-201

Thu-305

Thu-328

1

1

1

1

0

1

1

3

Value1

Value2

Value3

Value4

0

1

2

3

Left-side is always Zero-copied!

SV1 SV2

SV3

Hit
SV4

Newly Added SV is

Always Dense

End-to-End Performance in DuckDB

January 16, 2026 25

• We integrate our solutions into DuckDB and measure the end-to-end performance.

• Smart Compaction: Learning Compaction + Logical Compaction

End-to-End Performance in DuckDB

January 16, 2026 25

• We integrate our solutions into DuckDB and measure the end-to-end performance.

• Smart Compaction: Learning Compaction + Logical Compaction

	Slide 1: Data Chunk Compaction in Vectorized Execution
	Slide 2: Database System
	Slide 3: Database System
	Slide 4: Database System
	Slide 5: Database System
	Slide 6: Database System
	Slide 7: Iterator Execution Model
	Slide 8: Iterator Execution Model
	Slide 9: Iterator Execution Model
	Slide 10: Iterator Execution Model
	Slide 11: Iterator Execution Model
	Slide 12: Iterator Execution Model
	Slide 13: Iterator Execution Model
	Slide 14: Buying Beer for a Party. The Silly Way.
	Slide 15: Buying Beer for a Party. A Better Way.
	Slide 16: A Smart Way: Vectorized Execution
	Slide 17: A Smart Way: Vectorized Execution
	Slide 18: A Smart Way: Vectorized Execution
	Slide 19: Vectorized (In-Cache) Processing
	Slide 20: Part 1 Data Chunk Compaction in Vectorized Execution
	Slide 21: Small Chunk Problem
	Slide 22: Buying Beer for a Party. An Accident.
	Slide 23: Small Chunk Problem
	Slide 24: Chunk-reducing Operators: Filter
	Slide 25: Chunk-reducing Operators: Filter
	Slide 26: Chunk-reducing Operators: Filter
	Slide 27: Chunk-reducing Operators: Filter
	Slide 28: Chunk-reducing Operators: Hash Join
	Slide 29: Chunk-reducing Operators: Hash Join
	Slide 30: Chunk-reducing Operators: Hash Join
	Slide 31: Small Chunk Problem
	Slide 32: Small Chunk Problem
	Slide 33: Compact as More as Possible
	Slide 34: Compact as Less as Possible
	Slide 35: Compact Small Chunks Only
	Slide 36: Our Solution 1: Learning Compaction
	Slide 37: Learning Compaction
	Slide 38: Learning Compaction
	Slide 39: Learning Compaction
	Slide 40: Learning Compaction
	Slide 41: Our Solution 2: Logical Compaction
	Slide 42: Logical Compaction
	Slide 43: Logical Compaction
	Slide 44: Our Solution 2: Logical Compaction
	Slide 45: Hash Probe the Result Chunk Again
	Slide 46: Hash Probe the Result Chunk Again
	Slide 47: Hash Probe the Result Chunk Again
	Slide 48: Hash Probe the Result Chunk Again
	Slide 49: End-to-End Performance in DuckDB
	Slide 50: End-to-End Performance in DuckDB

