‘\\\\\\\\‘.
& .'l. .
£ oy 0," N
=
=] > ‘
d En /
7| @
8% EH \ =
¢ 4 A
A =
O £
».% 5
& &
Qy, " 79117 _ &5
Wryrreesss

Tsinghua University

Data Chunk Compaction in Vectorized
Execution

Yiming Qiao, Huanchen Zhang
Institute for Interdisciplinary Information Sciences

Tsinghua University

SQL

A SQL Query

—

Database System

—

Desired Data

SQL

A SQL Query

—

Database System

P

SQL Parser

—

Desired Data

SQL

A SQL Query

—

Database System

il

SQL Parser Plan Optimizer

—

Desired Data

Database System

2o |5 4 A

A SQL Query SQL Parser Plan Optimizer Plan Executor Desired Data

/

Storage Engine

Database System

2o |8 A

A SQL Query SQL Parser Plan Optimizer Plan Executor Desired Data

/

Storage Engine

We Focus on Improving the Query Plan Executor

January 16, 2026 1

lterator Execution Model

SELECT id, PROJECT Id, bonus
(target - 30) * 50 AS bonus

FROM employee
WHERE target > 30

FILTER Target > 30

SCAN Table Employee

January 16, 2026 2

lterator Execution Model

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

January 16, 2026

4\1,

Next()
PROJECT
Next()
| FILTER
Next() 101 John 27
SCAN

lterator Execution Model

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

A\L

Next()

PROJECT

:l

Next()

101

John

27 | >30? | False

FILTER

—+

Next()

101

John

27

SCAN

lterator Execution Model

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

A\L

Next()
PROJECT
Next() 102 | Alice | 32 |>30? | True
| T FILTER
Next() 102 Alice 32

SCAN

lterator Execution Model

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

A\L

(target-30)*50

Next() 102 | Alice | 32 100
T PROJECT
Next() 102 | Alice | 32
| FILTER
Next()

SCAN

lterator Execution Model

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

:|, T (target-30)*50 I
Next() 102 | Alice | 32 100
PROJECT
Next()
| FILTER
Next()

SCAN

lterator Execution Model

* Operators: SCAN, FILTER, PROJECT

 Iterator Interface:
* Open()
* Next() # “Next Tuple Please”
* Close()

Three Function Calls for
Processing a Single Tuple!

January 16, 2026

<

']‘7

Next()
PROJECT
Next()
| FILTER
Next()
SCAN

Buying Beer for a Party. The Silly Way.

An Intuitive Example From Peter Boncz

* (Go to a store

» Take one beer bottle
* Pay at the register

* Return home = “tuple”

* Put the bottle 1n the fridge

* Repeat... 100 times!

January 16, 2026

Buying Beer for a Party. A Better \Way.

An Intuitive Example From Peter Boncz

* (o to a store
* Take two crates of beer (2x24!)
* Pay at the register

e Return home

* Put crates in the fridge

* Repeat 48x less!

48x less Function Calls for Processing a Single Tuple!

January 16, 2026

A Smart Way: Vectorized Execution

SELECT id, :l,

(target - 30) * 50 AS bonus Next()
FROM employee PROJECT
WHERE target > 30 q,
Next()
Process a Chunk of Tuples at FILTER
a Time, with Columnar Store e
102 Alice 32
NeXt() 103 Tom 31
104 || Jack 29 SCAN

January 16, 2026 6

A Smart Way: Vectorized Execution

SELECT id, i

(target - 30) * 50 AS bonus Next()

FROM employee PROJECT
WHERE target > 30
101 John 27 False
Next() 102 || Alice 32 = 309 True
103 Tom 31 True
FILTER
Process a Chunk of Tuples at q’ 104]| Jack | [29 R
a Time, with Columnar Store e
102 Alice 32
Next() 17051 7om || 31
104 || Jack 29 SCAN
January 16, 2026 6

A Smart Way: Vectorized Execution

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

A Selection Vector/Bit Map is
used to Mark Tuples

January 16, 2026

4\1,

(target-30)*50

102

Alice

32

100

Next() | 103 || Tom || 31 50
A~ PROJECT
1 101 John 27 False
i 32
Next() 102 Alice > 309 True
103 Tom 31 True
| 104 Jack 29 False | FILTER
Next()
SCAN
6

Vectorized (In-Cache) Processin

* Vector-at-a-time:
* About 1000 tuples

* Processed 1n a tight loop:

« > + *
* Cache-friendly:

* A vector 1s sequentially accessed

January 16, 2026

9

A\L

:l

Next()

| 104 Jack 29

Next()
PROJECT
101 John 2_7 False
102 §| Alice 32 True
> 30?
103 Tom 31 True
False | FILTER

Next()

SCAN

Part 1

Data Chunk Compaction in Vectorized Execution

January 16, 2026

Small Chunk Problem

SELECT id,

(target - 30) * 50 AS bonus
FROM employee
WHERE target > 30

January 16, 2026

106 Ali 32
Next() ‘ e
Only one Tuple! PROJECT
1 105 John 27 False
106 Ali 32 T
Next() 1c > 30—
107 Tom 31 False |
108 Jack 29 False | FILTER
1 101 John 27
102 Alice 32
NEXt() 103 Tom 31
104 || Jack 29 SCAN
8

Buying Beer for a Party. An Accident.

-s@gﬁg’@@

Heineken

.g@fg)ﬁt@xa

.9(%@@@

We take two crates from the shop
but only put one bottle in the fridge!

January 16, 2026

Small Chunk Problem

Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 64 1 1 1
_/ N N N
SCAN FILTER FILTER PROJECT
| | \]
| |
Vectorized Execution [terator Execution
(High Performance) (Limited Performance)

Chunk Size (and Data Volume) is Greatly Reduced During Execution

January 16, 2026 10

Chunk-reducing Operators: Filter

101 John 27 True

102 Alice 32 True

103 Tom 31 True

104 Jack 29 True
January 16, 2026

— () —

FILTER

101 John 27 False
102 || Alice 32 True
103 Tom 31 True
104 Jack 29 False

11

Chunk-reducing Operators: Filter

101 John 27 True
102 || Alice 32 True
103 Tom 31 True
104 Jack 29 True

e Data Chunk Structure: Some Data Vectors + One Selection Vector

« Zero-copy Benefit

January 16,

2026

— () —

FILTER

101 John 27 False
102 || Alice 32 True
103 Tom 31 True
104 Jack 29 False

11

Chunk-reducing Operators: Filter

101 John 27 True
102 Alice 32 True
103 Tom 31 True
104 Jack 29 True
105 Tony 22 True
106 || Jerry 21 True
107 Joy 25 True
108 Steve 31 True
January 16, 2026

— () —

FILTER

— () —

FILTER

101 John 27 False
102 || Alice 32 True
103 Tom 31 True
104 Jack 29 False
105 || Tony 22 False
106 || Jerry 21 False
107 Joy 25 False
108 || Steve 31 True

11

101 John 27 True
102 || Alice 32 True
103 Tom 31 True
104 Jack 29 True
105 Tony 22 True
106 || Jerry 21 True
107 Joy 25 True
108 || Steve 31 True

Chunk-reducing Operators: Filter

—>Q\

FILTER 102 || Alice 31 True
103 Tom 31 True

108 || Steve 32 True

False

—>Q/

FILTER

If we compact them, we have additional memory copies;

January 16, 2026

otherwise, the vectorized execution suffers.

11

Chunk-reducing Operators: Hash Join

SELECT id, name, course_id,
FROM students, courses

101 John True W John - False

102 || Alice True 102 §| Alice Thu-201 True

103 || Tom | | True — Q — 103 || Tom Thu-101 True

104 Jack True 104 Jack - False
HASH JOIN —

January 16, 2026

Chunk-reducing Operators: Hash Join

SELECT id, name, course_id,

FROM students, courses

101 John True F John False

102 || Alice True 102 §| Alice Thu-201 True

103 || Tom | | True — Q — 103 || Tom Thu-101 True

104 Jack True 104 Jack False
HASH JOIN —

« Zero-copy Benefit: Reuse the data in the column id and name.

« Copy the New Vector Values into the Result Chunk.

January 16, 2026

Chunk-reducing Operators: Hash Join

101 John True
102 || Alice True
103 Tom True
104 Jack True

— () —

HASH JOIN

One Full Chunk with 4 tuples

-> Three Small Chunks with 5 tuples!

January 16, 2026

101 John - False
102 || Alice Thu-201 True
103 Tom Thu-101 True
104 Jack - False
101 John Thu-401 True
102 || Alice - False
103 Tom - False
104 Jack - False
101 John - False
102 || Alice Thu-328 True
103 Tom - False
104 Jack Thu-824 True

13

Small Chunk Problem

of Tuple: # of Tuple: # of Tuple: # of Tuple: # of Tuple:

4000 4000 8000 8000 16000
Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:

2048 64 1 1 1

_/ N N N
SCAN HASH JOIN HASH JOIN PROJECT
|] \]
| |
Vectorized Execution It takes 80% execution time
(High Performance)

Chunk Size is Greatly Reduced During Execution, but Data Volume is
not Necessarily Reduced.

January 16, 2026 14

Small Chunk Problem

of Tuple: # of Tuple: # of Tuple: # of Tuple: # of Tuple:
4000 4000 8000 8000 16000
Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:

2048 64 1 1 1

)) ,
N/ —/

O
SCAN l l

Given a Set of Data Chunks, Determine How to Compact Them to

()) ,
N AN ’O
l l PROJECT

Minimize the Total Execution Time (= compaction time + compute time).

January 16, 2026 14

Compact as More as Possible

* Full Compaction: compacts all chunks containing less than 2048

tuples.
Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 2048 2048 2048 2048
/| _/ _/ _/
SCAN PROJECT

Too Many Memory Copies!
Consider the Case Where a Tuple is in the Length of 1 MB...

January 16, 2026 15

Compact as Less as Possible

* No Compaction: no chunks are compacted

Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 64 1 1 1
/| _/ _/ _/
SCAN PROJECT

Too Many Small Chunks!
Consider the Case Where a Tuple is in the Length of 10 Bytes...

January 16, 2026 16

Compact Small Chunks Only

* Binary Compaction: chunks smaller than a predefined threshold are

compacted.

* A Trade-off Between Interpretation Overhead vs. Memory Copy

* The smaller the chunk, the greater the benefit from such compaction.

Choosing a Predefined Threshold is Difficult

Because it involves Database Design and Workload Characteristics.

January 16, 2026 17

Our Solution 1: Learning Compaction

* Learning Compaction: chunks smaller than a Learned threshold are compacted.

 Morsel-driven Parallelism: data is divided into chunks, with each thread
responsible for fetching and processing a chunk through the entire pipeline before
moving on to the next.

* Then, each chunk can serve as a sample for a learning algorithm

* Multi-armed Bandit Problem: select the optimal thresholds

January 16, 2026 18

Learning Compaction

* Learning Compaction: chunks smaller than a learned threshold are compacted.

Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 64 1 1 1

SCAN l l l l PROJECT

a, a, a, a,

* Multi-armed Bandit Problem: select each alpha from 0, 32, 64, 128, ..., 2048

January 16, 2026 19

Learning Compaction

* Learning Compaction: chunks smaller than a learned threshold are compacted.

Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 64 1 1 1
O)) O\ VR >O
_/ N NG A/
SCAN PROJECT
|]
|
i Feedback Reward for «a,

January 16, 2026 19

Learning Compaction

* Learning Compaction: chunks smaller than a learned threshold are compacted.

Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 64 1 1 1
O)) O\ VR >O
_/ N NG A/

SCAN PROJECT

|]
|
@, Feedback Reward for a,

January 16, 2026 19

Learning Compaction

* Learning Compaction: chunks smaller than a learned threshold are compacted.

Vector Size: Vector Size: Vector Size: Vector Size: Vector Size:
2048 64 1 1 1
_/ N NG A/

SCAN PROJECT
|]

|

@3 Feedback Reward
for a,

January 16, 2026 19

Our Solution 2: Logical Compaction

F John True T John - False

102 || Alice True 102 §| Alice Thu-201 True

103 Tom True — O — 103 Tom - False

104 Jack True 104 Jack - False

— HASH JOIN —

W John Thu-401 True

102 || Alice Thu-305 True

103 Tom - False

Observation: All three Result Chunks 104 || Tack _ False
Share the Same Left Vectors. ——

101 John - False

102 || Alice Thu-328 True

103 Tom - False

& Jack - False

January 16, 2026

Logical Compaction

of Matches
101 John True 101 John True 1
102 Alice True 102 Alice True 3
— —
103 Tom True 103 Tom True 0
104 Jack True 104 Jack True 0
— HASH JOIN —

Putting all generated tuples in one chunk seems to be a good idea, but

how to keep the zero-copy property of the Left Side Vectors...

January 16, 2026

Logical Compaction

101 John True 101 John Thu-401
102 || Alice True 102 |} Alice Thu-201
— —>
103 Tom True 103 Tom Thu-305
104 Jack True 104 Jack Thu-328
— HASH JOIN —
Requirements:

» Left-side vectors should be zero-copied.

* The mapping relationship between the left-side and right-side vectors should be maintained.

* The resulting chunk can be an input chunk to other operators.

January 16, 2026

Our Solution 2: Logical Compaction

101 John
102 |} Alice
103 Tom
104 Jack

KN
1
2
L

— () —

HASH JOIN

101 John
102 |} Alice
103 Tom
104 Jack

Thu-401

Thu-201

Thu-305

Thu-328

‘wl\)»—‘o‘

Our Solution: Selection Vector (SV) with Repeated Values:

e Left-side vectors have an SV.

* Right-side vectors have another SV.

January 16, 2026

23

Hash Probe the Result Chunk Again

SV, SV, # of Matches
101 || Jomn 0 Thu-401 0 1
102 || Alice 1 Thu-201 1 —_— O m— 2
103 || Tom | Thu-305 2 0
104 || Jack | Thu-328 3 HASH JOIN !
Hit
SV,
101 || John 1
102 Alice 1
a 103 Tom 1
104 Jack 1

January 16, 2026

SV, [i] = SV, [Hit[il]

24

Hash Probe the Result Chunk Again

SV, SV, # of Matches
101 || John 0 Thu-401 0 1
102 || Alice 1 Thu-201 1 —_— O m— 2
103 || Tom | Thu-305 2 0
104 || Jack | Thu-328 3 HASH JOIN !
Hit
101 || John 1 Thu-401 0
102 || Alice 1 Thu-201 1
9 103 Tom 1 Thu-305 1
104 Jack 1 Thu-328 3

January 16, 2026

SV, [i] = SV, [Hit]i]]

24

Hash Probe the Result Chunk Again

SV, SV, # of Matches
101 || John 0 Thu-401 0 1
102 |l Alice 1 Thu-201 1 | O —_ 2
103 || Tom 1 Thu-305 2 0
104 || Jack | Thu-328 3 HASH JOIN 1
Hit
SV,

101 John 1 Thu-401 0 Valuel 0

102 |} Alice 1 Thu-201 1 Value?2 1

a 103 Tom 1 Thu-305 1 Value3 2

104 || Jack 1 Thu-328 3 Value4 3

January 16, 2026

Newly Added SV is
Always Dense

24

Hash Probe the Result Chunk Again

SV, SV, # of Matches
101 || John 0 Thu-401 0 1
102 |l Alice 1 Thu-201 1 | O —_ 2
103 || Tom 1 Thu-305 2 0
104 || Jack | Thu-328 3 HASH JOIN !
Hit
SV,
101 John 1 Thu-401 0 Valuel 0
102 |} Alice 1 Thu-201 1 Value?2 1
a 103 Tom 1 Thu-305 1 Value3 2
104 || Jack 1 Thu-328 3 Value4 3
\ Y J Newly Added SV is

January 16, 2026

Left-side is always Zero-copied!

Always Dense

End-to-End Performance in DuckDB

* We integrate our solutions into DuckDB and measure the end-to-end performance.

* Smart Compaction: Learning Compaction + Logical Compaction

End-to-End Performance in DuckDB

* We integrate our solutions into DuckDB and measure the end-to-end performance.

* Smart Compaction: Learning Compaction + Logical Compaction

5)

Total Time |

"
=

January 16, 2026

Mo Cpt.

[O T ¥
¢ 5 & =

g4 .5

41.7 41,2

39.2

Pl
LA

TPC-H (5F =10)

Full Cpt. Binary Cpt. I Smart Cpt.
18011749 1404 143.2
e [13 1207 =0 a2
105.8

1"“:" l{I{I'
120- B0-
100 L1

TPC-D5 (5F = 10) JOB

25

	Slide 1: Data Chunk Compaction in Vectorized Execution
	Slide 2: Database System
	Slide 3: Database System
	Slide 4: Database System
	Slide 5: Database System
	Slide 6: Database System
	Slide 7: Iterator Execution Model
	Slide 8: Iterator Execution Model
	Slide 9: Iterator Execution Model
	Slide 10: Iterator Execution Model
	Slide 11: Iterator Execution Model
	Slide 12: Iterator Execution Model
	Slide 13: Iterator Execution Model
	Slide 14: Buying Beer for a Party. The Silly Way.
	Slide 15: Buying Beer for a Party. A Better Way.
	Slide 16: A Smart Way: Vectorized Execution
	Slide 17: A Smart Way: Vectorized Execution
	Slide 18: A Smart Way: Vectorized Execution
	Slide 19: Vectorized (In-Cache) Processing
	Slide 20: Part 1 Data Chunk Compaction in Vectorized Execution
	Slide 21: Small Chunk Problem
	Slide 22: Buying Beer for a Party. An Accident.
	Slide 23: Small Chunk Problem
	Slide 24: Chunk-reducing Operators: Filter
	Slide 25: Chunk-reducing Operators: Filter
	Slide 26: Chunk-reducing Operators: Filter
	Slide 27: Chunk-reducing Operators: Filter
	Slide 28: Chunk-reducing Operators: Hash Join
	Slide 29: Chunk-reducing Operators: Hash Join
	Slide 30: Chunk-reducing Operators: Hash Join
	Slide 31: Small Chunk Problem
	Slide 32: Small Chunk Problem
	Slide 33: Compact as More as Possible
	Slide 34: Compact as Less as Possible
	Slide 35: Compact Small Chunks Only
	Slide 36: Our Solution 1: Learning Compaction
	Slide 37: Learning Compaction
	Slide 38: Learning Compaction
	Slide 39: Learning Compaction
	Slide 40: Learning Compaction
	Slide 41: Our Solution 2: Logical Compaction
	Slide 42: Logical Compaction
	Slide 43: Logical Compaction
	Slide 44: Our Solution 2: Logical Compaction
	Slide 45: Hash Probe the Result Chunk Again
	Slide 46: Hash Probe the Result Chunk Again
	Slide 47: Hash Probe the Result Chunk Again
	Slide 48: Hash Probe the Result Chunk Again
	Slide 49: End-to-End Performance in DuckDB
	Slide 50: End-to-End Performance in DuckDB

