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A Performance Issue Caused By Small Chunks In Vectorized Execution
• Vectorized engines process data in fixed-size chunks.
• Filters and joins often produce Small chunks.
• Example:  10,000 tuples in 8,000 chunks → 1.25 tuples/chunk.
• Consequences:
• ✗ High per-chunk overhead
• ✗ Poor SIMD/cache utilization

• Industry also Reports this Problem: Velox Issue-7801

Vectorized Hash Join: Zero-Copy Technique vs. Chunk Size
• Vectorized hash join probes the hash 

table row by row. Each probe may 
match a different number of tuples, 
causing output skew. 

• To ensure Zero-Copy, each match set 
becomes a separate small chunk. 

• This results in one input chunk leading 
to Many Output Chunks. 
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Zero-Copy Preferred Database: DuckDB, Velox Chunk Size Preferred Database: Datafusion, CockroachDB

Data Chunk Compaction: Memory Copy vs. Interpretation Overhead 
When to Compact? How to Compact?

• For large tuples, we should compact conservatively; 
• For small tuples, we should compact aggressively.

• Actually, not all memory copy is necessary for compaction…
• We compact small chunks before they are generated.

Our Solution 1: Learning Compaction

In Vectorized Execution, a Data Chunk can 
be considered a Sample.

Our Solution 2: Logical Compaction (Merged Into DuckDB 1.2.0)

The Proposed Vectorized Hash Join Outputs only one non-full chunk per input chunk, at 
the cost of adding additional selection vectors. 
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Stable Improvement Without Any Regressions on All Benchmarks
Our CodeOur Solution is used by the Team Embryo (Third Prize) in the SIGMOD Programming Contest 2025.


