
Data Chunk Compaction in Vectorized Execution

Yiming Qiao, Huanchen Zhang

Contact: Yiming Qiao · qiaoym21@mails.tsinghua.edu.cn / yimingqiao3163@gmail.com

A Performance Issue Caused By Small Chunks In Vectorized Execution
• Vectorized engines process data in fixed-size chunks.
• Filters and joins often produce Small chunks.
• Example: 10,000 tuples in 8,000 chunks → 1.25 tuples/chunk.
• Consequences:
• ✗ High per-chunk overhead
• ✗ Poor SIMD/cache utilization

• Industry also Reports this Problem: Velox Issue-7801

Vectorized Hash Join: Zero-Copy Technique vs. Chunk Size
• Vectorized hash join probes the hash

table row by row. Each probe may
match a different number of tuples,
causing output skew.

• To ensure Zero-Copy, each match set
becomes a separate small chunk.

• This results in one input chunk leading
to Many Output Chunks.

!!"#AB !C ' !(F*+ F,+ !-F.+
!.!,

LM1+2P!"+!"#AB+41MR+"#$
++++LM1+2P!"+S"127"MU9+F:;+F:+<+=2U2!SC1R>%?@++++++++++++++++++++++AA+B24M12+2C2!#S:MA

++++LM1+2P!"+S"127"MU9+F:;+ab9PS2C1R>%c+F:c+!:+d+eee+d+!.?+++++AA+P4S21+2C2!#S:MA

!"#$%"C$'E)$*+,-.

L-0#1*,"-C'2$1.C$.'"P7+:AS214P!27;+=2U2!SC1R+PA9+ab9PS2C1Re+
fM92U+*

C1R g2hP19 -MA4:92A!2
i *e, .
*,M *e. .
*i,k ,ek lm

!

fM92U+,
C1R g2hP19 -MA4:92A!2
i *en .
*,M .ek *,.
i,k ,e *.

!

fM92U+.
C1R g2hP19 -MA4:92A!2
i nen Mml
*,M keM mM
i,k ke l

!=2U2!SC1R>%?;'12S#1A7+S"2+P1R+h:S"+":o"27S+12hP19+41MR+S"2+fM92U+%e
ab9PS2C1R>%c+F:c+&'!()*+?;+#b9PS27+S"2+P1R+F:+4M1+S"2+fM92U+%e

!*+ >p1M!277:Ao+TPS2A!r?

Zero-Copy Preferred Database: DuckDB, Velox Chunk Size Preferred Database: Datafusion, CockroachDB

Data Chunk Compaction: Memory Copy vs. Interpretation Overhead
When to Compact? How to Compact?

• For large tuples, we should compact conservatively;
• For small tuples, we should compact aggressively.

• Actually, not all memory copy is necessary for compaction…
• We compact small chunks before they are generated.

Our Solution 1: Learning Compaction

In Vectorized Execution, a Data Chunk can
be considered a Sample.

Our Solution 2: Logical Compaction (Merged Into DuckDB 1.2.0)

The Proposed Vectorized Hash Join Outputs only one non-full chunk per input chunk, at
the cost of adding additional selection vectors.

���������� 	��

��

�

��

�

�

�$
(�

!��
 "

��
�'

� ���

�	�� �	�

���

����������� 	��	��

	
�

	��

	��

	��

�$
(�

!��
 "

��
�'

�

	����

	
���
	
���

	����

���
��

��

	��

	
�

	��

�$
(�

!��
 "

��
�'

�

	���

	
��� 		���
	�
��

�$��%(� �)!!��%(� � #�&*��%(� �"�&(��%(�

Stable Improvement Without Any Regressions on All Benchmarks
Our CodeOur Solution is used by the Team Embryo (Third Prize) in the SIGMOD Programming Contest 2025.

