Blitzcrank: Fast Semantic Compression for
In-Memory Online Transaction Processing

Yiming Qiao, Yihan Gao, Huanchen Zhang
Tsinghua University

In-Memory Compression Matters

—=p |n-memory Databases are faster than On-disk Databases

Cache Memory SSD

1ns @ 80ns

In-Memory Compression Matters

—=p |n-memory Databases are faster than On-disk Databases

Cache Memory SSD

1ns @ 80ns

—=p Memory is an expensive and limited resource.

Datacenter Power Hardware Cost
[ASPLOS’23, Meta]

Memory Percentage

Prior Work Focuses on Column Store

=

Ol |IN]|oOo|O |]IWIN]|PF

[
o

: gender : Data of the same data type Is stored together
M

: v : Lightweight Encodings (e.g., RLE, FSST, LeCo)
I M I

|

11

| L

I F I

IEEYERL

I I

=M1

M |l

I
L

Prior Work Focuses on Column Store

=

Data of the same data type Is stored together

Lightweight Encodings (e.g., RLE, FSST, LeCo)

Analytical workloads are read-mostly with large

batched processing.

Select gender, Count(*)

From user

Group By gender

Ol |IN]|oOo|O |]IWIN]|PF

[
o

SIMD (e.g., Arrow, Parquet, FastLanes)

r—_—_—_—_—_—_—_
Hzlzlz|nlz|n|z|z]|=

I
L

Row-Store Compression Is the Missing Piece

r—_—_

id | gender ;balance _

. i Column-level Compression Does not Work
11 M 19.8 .. :

! ; Similar data is stored separately
24 ™ | 225
3 : M |l 198

i |
4 ' M |1 105

|

5 F i 62
6l M || 84

e o o o =

Row-Store Compression Is the Missing Piece

e Column-level Compression Does not Work
- . — Similar data is stored separately
2 M 22.5

Ll v T ss]
. Y = A Tuple I1s Too Small to Compress
5 F 6.2 Compressor 25 bytes
6 M 8.4 7STD

Row-Store Compression Is the Missing Piece

id gender balance]
r==—===—=———4 Column-level Compression Does not Work
1 M 19.8 |
: l Similar data is stored separately
1l 2 M 225 |
: 3 M 19.8 :
I Y T~ : A Block Is Large Enough to Compress
I
:_ 5 F 6.2 : Compressor 25 bytes 100 KB
6 M 8.4 ZSTD 9.6%

Block Compressor Has High Access Latency

id gender balance
1| w | 18
2 M 22.5
3 M 19.8
4 M 10.5
5 F 6.2
6 M 8.4

T/ —

——_—_—__J

(©) Compression Factor

(©) Compression Throughput

Block Compressor Has High Access Latency

id

gender

balance

1

19.8

2

22.5

——_1

19.8

10.5

6.2

ol

——_—_—__J

(©) Compression Factor
(©) Compression Throughput

() Tuple Random-access Latency

Block Compressor (e.g., ZSTD) must decompress the entire
compression block to access a single tuple

This Paper Offers a Tuple-level Compressor

A stand-alone C++ library for compressing row-store OLTP databases

A
@ Uncompressed

----- @ Zstandard

@ This Paper: Pareto Improvement
>

Database Size
/

Transaction Latency

This Paper Offers a Tuple-level Compressor

A stand-alone C++ library for compressing row-store OLTP databases

id

gender

balance

3

M

19.8

Mem: <10 MB

>

Blitzcrank

Cpr. Factor:

Compression

»| Compressed Tuple

Decompression

Latency:

Throughput:

2 us/tuple

100 MB/s

200 MB/s

Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
1 F Taylor
2 M Alex
3 F Alex
4 F Taylor
5 F Taylor

Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
1 F Taylor
2 M Alex
3 F Alex
4 F Taylor

Taylor

Zstandard treats the uncompressed data simply
as consecutive bytes

@ Make sense for General-purpose Compressors

@ High-level semantics are lost (e.g. table schema)

Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name

1 F Taylor

2 M Alex

3 F Alex

4 F Taylor

5 F Taylor
B

Zstandard treats the uncompressed data simply
as consecutive bytes

@ Make sense for General-purpose Compressors

@ High-level semantics are lost (e.g. table schema)

itzcrank uses the Semantic Modeling

Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
j = -
1 |

1 1 F Taylor

2 |, M | Alex

3 [V F T Alex
i i

4 |1 F 1| Taylor
I]

5 1 F | Taylor
s == =

Highly skewed distribution for attribute values

e.g., few users are male:
P (gender =M) = 0.2

10

Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
T = = — — —
| |

1 1 F Taylor!

2 |, M Alex |

3 [F Alex |
i]

4 I F Taylor |
I]

5 I F Taylor |

Highly skewed distribution for attribute values

e.g., few users are male:
P (gender =M) = 0.2

Correlation between attributes of the same tuple
e.g., all Taylors are female:

P (gender = F | name = Taylor) = 1

10

Compression = Modeling + Encoding

Find the features of the uncompressed data

Semantic Model for name
P (name =Alex) =0.4
P (name = Taylor) = 0.6

id gender name
1 F Taylor
2 M Alex
3 F Alex
4 F Taylor
5 F Taylor

Semantic Model for gender
P (gender = F | name =Taylor) = 1

P (gender = F | name = Alex) = 0.5

J

11

Compression = Modeling + Encoding

Find the features of the uncompressed data

Semantic Model for name
d gender e P (name =Alex) =0.4
1 F Taylor P (name = Taylor) = 0.6
2 M Alex
£ 7 A @ Semantic Model for gender
4 = Taylor P (gender = F | name =Taylor) = 1
5 = Taylor P (gender = F | name = Alex) = 0.5 y

P (gender, name) = P (name) x P (gender | name)

Semantic Models Iin Blitzcrank

Attribute Value 4 A Semantic Model) Probability Interval
> _--T 7T~ ~ \A _ ,v [O, 0.4)
-~ Translate e
Alex
w Code
~ - _ 4_ T ===
________ - Inv-Translate ~——_ 0525

_ o (1))

12

Semantic Models Iin Blitzcrank

Attribute Value

— gy,
-
- ~J

\h ______

/A Semantic Model \

~

Probability Interval

-——————’

A Translate - -
- - Inv-Translate <4-
\ O (1) /

String

- o gy,
~~~-
—
—
—

I

Time-series JSON

12



Compression = Modeling + Encoding

Encode the data using learned semantic models

F Alex

( Semantic Model for name

L Semantic Model for gender

A Bitstream with - log, P (gender, name) bits

J—

— Coding Algorithm

e.g., Arithmetic Coding

13



Encoding of Arithmetic Coding

|

Semantic Model for name ]

Semantic Model for gender

gender

name

Alex

—

[0, 0.4)

[0.5, 1)

14



Encoding of Arithmetic Coding

|

Semantic Model for gender

Semantic Model for name ]

gender

name

Alex

—

[0,04) &

P(gender=F)=1

0.4 -

P (name = Alex) = 0.4

4
/0
4

P (name = Taylor) = 0.6

P (gender=M)=0.5

P (gender=F) =0.5

[0.5, 1)

[0.2, 0.4)

0.4

1

14




Encoding of Arithmetic Coding

|

Semantic Model for gender

Semantic Model for name ]

gender

name

Alex

—

[0,04) &

P(gender=F)=1

0.4 -

P (name = Alex) = 0.4

4
/0
4

P (name = Taylor) = 0.6

P (gender=M)=0.5

P (gender=F) =0.5

[0.5, 1)

0.4

1

[0.2,0.4) —— (.010),

14




Arithmetic Coding vs. Delayed Coding

Floating-point Calculation Simple Integer Probability
[0,04) &® [0.5,1) e.g., 4-bit integer [0,6) [3,16)
Variable-length Code Fixed-length Code

[0,04) ——  (.00),
[05,1) —— (1),

with near-entropy performance

15



Options of Fixed-length Codes

gender

name

age

Tom

21

—

[1/16, 1/4)

[1/8, 1/2)

[3/16, 1/4)

16



Options of Fixed-length Codes

gender | name age

F Tom 21

[1, 4) [2, 8) [3, 4)



Options of Fixed-length Codes

gender | name

age

F Tom

21

[1, 4) 2, 8) [3, 4)

For an interval [L, R), any 4-bit integer in this interval can be used as the code

Fixed-length (4-bit) Code 0001 0010 0011

16



Options of Fixed-length Codes

gender | name age

F Tom 21

[1, 4) [2, 8) [3, 4)

For an interval [L, R), any 4-bit integer in this interval can be used as the code

Fixed-length (4-bit) Code 0001 0010 0011
Bitstream (0001 0010 1001),
Interval Entropy in bits 2.4 1.4 4

®

16



Code Selection itself Carries Information

[1, 4) 2, 8) 3, 4)
_ _ Codel Code2  State
We have 3 code options for an interval [1, 4) 1 5 0
1, 2, 3 1 3 1

We have 6 code options for an interval [2, 8) - o 16

2, 3, 4, 5 6, 7 3 7 17




Code Selection itself Carries Information

[1, 4) [2, 8)

We have 3 code options for an interval [1, 4)
1, 2, 3

We have 6 code options for an interval [2, 8)

2, 3,4, 5,6, 7

Codel Code? State
1 2 0
1 3 1
3 6 16
3 7 17

We can use the first two intervals to represent the third interval

Offer 18 states

Require 16 states

17



Encode Three Intervals Using Two 4-bits

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system
[1, 4) [2, 8) [3, 4)

Radix 3 6 N=asbg=ax6+Db

18



Encode Three Intervals Using Two 4-bits

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system
1, 4) [2, 8) [3, 4)

Radix 3 6 N=asbg=ax6+Db
Initial Code 0001 0010 0011 (3)

Digits (a, b) oW 3=0,3,=0%6+3

18



Encode Three Intervals Using Two 4-bits

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

Radix
Initial Code
Digits (a, b)

Selected Code

Resulting Bitstream

[1, 4) 2, 8) 3, 4)
3 6 N=asbg=ax6+Db

0001 0010 0011 (3)
oW 3=033,=0%6+3

1+0 2+3

(0001 0101),

18



Step 1

Encoding of Delayed Coding

[1, 4) 2, 8)

2.4 bits 1.4 bits

3. 4)

4 bits

19



Encoding of Delayed Coding

11, 4) 2, 8) 3, 4)
2 4 bits 1.4 bits 4 bits
Step 1
- - - - - - = "= = -=-=-=-=-="="=7"="="=""="="="===" |
Step 2 | ! Resulting Code: (0001 0101),
|

It uses 8 bits to represent three intervals, with a total entropy of 7.8 bits

19



Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer

Step 1

Step 2

Step 2

20



Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer

Step 1

Step 2

Step 3

20



Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer

Step 1 = name = Tom

Step 2

Step 3

20



Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer
Step 1 = name = Tom
Step 2 = gender = F

Step 3

20



Decoding of Delayed Coding

Decoding Input:

Code

Step 1

Step 2

Step 3

Decoding Result:

Value

— name = Tom

— gender = F

= age =21

Information Buffer

F Tom 21

20



Applying Entropy Coding to Real Systems?

—~ 60 80% Smaller _ 20% Lower
___________________ 72 ) L _ _ e e e e e e mm e —
Q 50 ! I= f
X 0.8M

N 40 ! =
N | = 0.6M

30 : =
% : 5
_(% 20 i § 0.4M
© 10 | | y = 0.2M
A

0 0.0M

Origin  ZSTD  Blitz Origin  ZSTD  Blitz

21



OLTP Compression Takeaways

—=p Modern Entropy Coding is very Fast
—=p Compression Granularity is the Key Factor for OLTP

—p Source: https://github.com/YimingQiao/Blitzcrank

22



	Slide 1: Blitzcrank: Fast Semantic Compression for In-Memory Online Transaction Processing
	Slide 2: In-Memory Compression Matters
	Slide 3: In-Memory Compression Matters
	Slide 4: Prior Work Focuses on Column Store
	Slide 5: Prior Work Focuses on Column Store
	Slide 6: Row-Store Compression is the Missing Piece
	Slide 7: Row-Store Compression is the Missing Piece
	Slide 8: Row-Store Compression is the Missing Piece
	Slide 9: Block Compressor Has High Access Latency
	Slide 10: Block Compressor Has High Access Latency
	Slide 11: This Paper Offers a Tuple-level Compressor
	Slide 12: This Paper Offers a Tuple-level Compressor
	Slide 13: Compression = Modeling + Encoding
	Slide 14: Compression = Modeling + Encoding
	Slide 15: Compression = Modeling + Encoding
	Slide 16: Compression = Modeling + Encoding
	Slide 17: Compression = Modeling + Encoding
	Slide 18: Compression = Modeling + Encoding
	Slide 19: Compression = Modeling + Encoding
	Slide 20: Semantic Models in Blitzcrank
	Slide 21: Semantic Models in Blitzcrank
	Slide 22: Compression = Modeling + Encoding
	Slide 23: Encoding of Arithmetic Coding
	Slide 24: Encoding of Arithmetic Coding
	Slide 25: Encoding of Arithmetic Coding
	Slide 26: Arithmetic Coding vs. Delayed Coding
	Slide 27: Options of Fixed-length Codes 
	Slide 28: Options of Fixed-length Codes 
	Slide 29: Options of Fixed-length Codes 
	Slide 30: Options of Fixed-length Codes 
	Slide 31: Code Selection itself Carries Information
	Slide 32: Code Selection itself Carries Information
	Slide 33: Encode Three Intervals Using Two 4-bits
	Slide 34: Encode Three Intervals Using Two 4-bits
	Slide 35: Encode Three Intervals Using Two 4-bits
	Slide 36: Encoding of Delayed Coding
	Slide 37: Encoding of Delayed Coding
	Slide 38: Decoding of Delayed Coding
	Slide 39: Decoding of Delayed Coding
	Slide 40: Decoding of Delayed Coding
	Slide 41: Decoding of Delayed Coding
	Slide 42: Decoding of Delayed Coding
	Slide 43: Applying Entropy Coding to Real Systems?
	Slide 44: OLTP Compression Takeaways

