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In-Memory Compression Matters

—=p |n-memory Databases are faster than On-disk Databases
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In-Memory Compression Matters

—=p |n-memory Databases are faster than On-disk Databases

Cache Memory SSD

1ns @ 80ns

—=p Memory is an expensive and limited resource.

Datacenter Power Hardware Cost
[ASPLOS’23, Meta]

Memory Percentage



Prior Work Focuses on Column Store
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Prior Work Focuses on Column Store

=

Data of the same data type Is stored together

Lightweight Encodings (e.g., RLE, FSST, LeCo)

Analytical workloads are read-mostly with large

batched processing.

Select gender, Count(*)

From user

Group By gender

Ol |IN]|oOo|O | ]IWIN]|PF

[
o

SIMD (e.g., Arrow, Parquet, FastLanes)
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Row-Store Compression Is the Missing Piece
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Row-Store Compression Is the Missing Piece

e Column-level Compression Does not Work
- . — Similar data is stored separately
2 M 22.5

Ll v T ss]
. Y = A Tuple I1s Too Small to Compress
5 F 6.2 Compressor 25 bytes
6 M 8.4 7STD




Row-Store Compression Is the Missing Piece

id gender balance ]
r==—===—=———4  Column-level Compression Does not Work
1 M 19.8 |
: l Similar data is stored separately
1l 2 M 225 |
: 3 M 19.8 :
I Y T~ : A Block Is Large Enough to Compress
I
:_ 5 F 6.2 : Compressor 25 bytes 100 KB
6 M 8.4 ZSTD 9.6%




Block Compressor Has High Access Latency

id gender balance
1| w | 18
2 M 22.5
3 M 19.8
4 M 10.5
5 F 6.2
6 M 8.4

T/ —

_—_—_—_—__J

(©) Compression Factor

(©) Compression Throughput



Block Compressor Has High Access Latency

id

gender

balance

1

19.8

2

22.5

_—_—_1

19.8

10.5

6.2

ol

_—_—_—_—__J

(©) Compression Factor
(©) Compression Throughput

() Tuple Random-access Latency

Block Compressor (e.g., ZSTD) must decompress the entire
compression block to access a single tuple



This Paper Offers a Tuple-level Compressor

A stand-alone C++ library for compressing row-store OLTP databases

A
@ Uncompressed

----- @ Zstandard

@ This Paper: Pareto Improvement
>

Database Size
/

Transaction Latency



This Paper Offers a Tuple-level Compressor

A stand-alone C++ library for compressing row-store OLTP databases

id

gender

balance

3

M

19.8

Mem: <10 MB

>

Blitzcrank

Cpr. Factor:

Compression

»| Compressed Tuple

Decompression

Latency:

Throughput:

2 us/tuple

100 MB/s

200 MB/s



Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
1 F Taylor
2 M Alex
3 F Alex
4 F Taylor
5 F Taylor




Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
1 F Taylor
2 M Alex
3 F Alex
4 F Taylor

Taylor

Zstandard treats the uncompressed data simply
as consecutive bytes

@ Make sense for General-purpose Compressors

@ High-level semantics are lost (e.g. table schema)



Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name

1 F Taylor

2 M Alex

3 F Alex

4 F Taylor

5 F Taylor
B

Zstandard treats the uncompressed data simply
as consecutive bytes

@ Make sense for General-purpose Compressors

@ High-level semantics are lost (e.g. table schema)

itzcrank uses the Semantic Modeling



Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
j = -
1 |

1 1 F Taylor

2 |, M | Alex

3 [V F T Alex
i i

4 |1 F 1| Taylor
I ]

5 1 F | Taylor
s == =

Highly skewed distribution for attribute values

e.g., few users are male:
P (gender =M) = 0.2

10



Compression = Modeling + Encoding

Find the features of the uncompressed data

id gender name
T = = — — —
| |

1 1 F Taylor!

2 |, M Alex |

3 [ F Alex |
i ]

4 I F Taylor |
I ]

5 I F Taylor |

Highly skewed distribution for attribute values

e.g., few users are male:
P (gender =M) = 0.2

Correlation between attributes of the same tuple
e.g., all Taylors are female:

P (gender = F | name = Taylor) = 1
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Compression = Modeling + Encoding

Find the features of the uncompressed data

Semantic Model for name
P (name =Alex) =0.4
P (name = Taylor) = 0.6

id gender name
1 F Taylor
2 M Alex
3 F Alex
4 F Taylor
5 F Taylor

Semantic Model for gender
P (gender = F | name =Taylor) = 1

P (gender = F | name = Alex) = 0.5

J
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Compression = Modeling + Encoding

Find the features of the uncompressed data

Semantic Model for name
d gender e P (name =Alex) =0.4
1 F Taylor P (name = Taylor) = 0.6
2 M Alex
£ 7 A @ Semantic Model for gender
4 = Taylor P (gender = F | name =Taylor) = 1
5 = Taylor P (gender = F | name = Alex) = 0.5 y

P (gender, name) = P (name) x P (gender | name)



Semantic Models Iin Blitzcrank

Attribute Value 4 A Semantic Model ) Probability Interval
> _--T 7T~ ~ \A _ ,v [O, 0.4)
-~ Translate e
Alex
w Code
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Semantic Models Iin Blitzcrank

Attribute Value
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String
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Time-series JSON
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Compression = Modeling + Encoding

Encode the data using learned semantic models

F Alex

( Semantic Model for name

L Semantic Model for gender

A Bitstream with - log, P (gender, name) bits

J—

— Coding Algorithm

e.g., Arithmetic Coding
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Encoding of Arithmetic Coding

|

Semantic Model for name ]

Semantic Model for gender

gender

name

Alex

—

[0, 0.4)

[0.5, 1)
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Encoding of Arithmetic Coding

|

Semantic Model for gender

Semantic Model for name ]

gender

name

Alex

—

[0,04) &

P(gender=F)=1

0.4 -

P (name = Alex) = 0.4

4
/0
4

P (name = Taylor) = 0.6

P (gender=M)=0.5

P (gender=F) =0.5

[0.5, 1)

[0.2, 0.4)

0.4

1

14




Encoding of Arithmetic Coding

|

Semantic Model for gender

Semantic Model for name ]

gender

name

Alex

—

[0,04) &

P(gender=F)=1

0.4 -

P (name = Alex) = 0.4

4
/0
4

P (name = Taylor) = 0.6

P (gender=M)=0.5

P (gender=F) =0.5

[0.5, 1)

0.4

1

[0.2,0.4) —— (.010),
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Arithmetic Coding vs. Delayed Coding

Floating-point Calculation Simple Integer Probability
[0,04) &® [0.5,1) e.g., 4-bit integer [0,6) [3,16)
Variable-length Code Fixed-length Code

[0,04) ——  (.00),
[05,1) —— (1),

with near-entropy performance
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Options of Fixed-length Codes

gender

name

age

Tom

21

—

[1/16, 1/4)

[1/8, 1/2)

[3/16, 1/4)

16



Options of Fixed-length Codes

gender | name age

F Tom 21

[1, 4) [2, 8) [3, 4)



Options of Fixed-length Codes

gender | name

age

F Tom

21

[1, 4) 2, 8) [3, 4)

For an interval [L, R), any 4-bit integer in this interval can be used as the code

Fixed-length (4-bit) Code 0001 0010 0011

16



Options of Fixed-length Codes

gender | name age

F Tom 21

[1, 4) [2, 8) [3, 4)

For an interval [L, R), any 4-bit integer in this interval can be used as the code

Fixed-length (4-bit) Code 0001 0010 0011
Bitstream (0001 0010 1001),
Interval Entropy in bits 2.4 1.4 4

®
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Code Selection itself Carries Information

[1, 4) 2, 8) 3, 4)
_ _ Codel Code2  State
We have 3 code options for an interval [1, 4) 1 5 0
1, 2, 3 1 3 1

We have 6 code options for an interval [2, 8) - o 16

2, 3, 4, 5 6, 7 3 7 17




Code Selection itself Carries Information

[1, 4) [2, 8)

We have 3 code options for an interval [1, 4)
1, 2, 3

We have 6 code options for an interval [2, 8)

2, 3,4, 5,6, 7

Codel Code? State
1 2 0
1 3 1
3 6 16
3 7 17

We can use the first two intervals to represent the third interval

Offer 18 states

Require 16 states

17



Encode Three Intervals Using Two 4-bits

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system
[1, 4) [2, 8) [3, 4)

Radix 3 6 N=asbg=ax6+Db

18



Encode Three Intervals Using Two 4-bits

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system
1, 4) [2, 8) [3, 4)

Radix 3 6 N=asbg=ax6+Db
Initial Code 0001 0010 0011 (3)

Digits (a, b) oW 3=0,3,=0%6+3

18



Encode Three Intervals Using Two 4-bits

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

Radix
Initial Code
Digits (a, b)

Selected Code

Resulting Bitstream

[1, 4) 2, 8) 3, 4)
3 6 N=asbg=ax6+Db

0001 0010 0011 (3)
oW 3=033,=0%6+3

1+0 2+3

(0001 0101),

18



Step 1

Encoding of Delayed Coding

[1, 4) 2, 8)

2.4 bits 1.4 bits

3. 4)

4 bits

19



Encoding of Delayed Coding

11, 4) 2, 8) 3, 4)
2 4 bits 1.4 bits 4 bits
Step 1
- - - - - - = "= = -=-=-=-=-="="=7"="="=""="="="===" |
Step 2 | ! Resulting Code: (0001 0101),
|

It uses 8 bits to represent three intervals, with a total entropy of 7.8 bits

19



Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer

Step 1

Step 2

Step 2
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Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer

Step 1

Step 2

Step 3
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Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer

Step 1 = name = Tom

Step 2

Step 3
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Decoding of Delayed Coding

Decoding Input:

Code Value Information Buffer
Step 1 = name = Tom
Step 2 = gender = F

Step 3

20



Decoding of Delayed Coding

Decoding Input:

Code

Step 1

Step 2

Step 3

Decoding Result:

Value

— name = Tom

— gender = F

= age =21

Information Buffer

F Tom 21

20



Applying Entropy Coding to Real Systems?

—~ 60 80% Smaller _ 20% Lower
___________________ 72 ) L _ _ e e e e e e mm e —
Q 50 ! I= f
X 0.8M

N 40 ! =
N | = 0.6M

30 : =
% : 5
_(% 20 i § 0.4M
© 10 | | y = 0.2M
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Origin  ZSTD  Blitz Origin  ZSTD  Blitz
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OLTP Compression Takeaways

—=p Modern Entropy Coding is very Fast
—=p Compression Granularity is the Key Factor for OLTP

—p Source: https://github.com/YimingQiao/Blitzcrank

22
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