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In-memory Databases are faster than On-disk Databases
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In-memory Databases are faster than On-disk Databases

Memory is an expensive and limited resource. 

[ASPLOS’23, Meta]
Datacenter Power Hardware Cost

Memory Percentage 33.3% 37.1%

Cache Memory SSD

1ns 80ns 105ns

In-Memory Compression Matters
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Data of the same data type is stored together 

Lightweight Encodings (e.g., RLE, FSST, LeCo)

Analytical workloads are read-mostly with large 

batched processing.

Select gender, Count(*)
  From user
 Group By gender

SIMD (e.g., Arrow, Parquet, FastLanes)



Row-Store Compression is the Missing Piece

5

Column-level Compression Does not Work
id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Similar data is stored separately
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Column-level Compression Does not Work
id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Similar data is stored separately

A   Tuple is    Too Small to Compress

Compressor 25 bytes

ZSTD 1.1×   



Row-Store Compression is the Missing Piece

5

Column-level Compression Does not Work
id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Similar data is stored separately

A   Block is Large Enough to Compress

Compressor 25 bytes 100 KB

ZSTD 1.1×   9.6×



Block Compressor Has High Access Latency
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Compression Factor

Compression Throughput

id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4



Block Compressor Has High Access Latency
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Tuple Random-access Latency

Compression Factor

Block Compressor (e.g., ZSTD) must decompress the entire 

compression block to access a single tuple

Compression Throughput

id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4



This Paper Offers a Tuple-level Compressor
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A stand-alone C++ library for compressing row-store OLTP databases  

Transaction Latency

D
a

ta
b

a
s
e

 S
iz

e
Uncompressed

Zstandard

This Paper: Pareto Improvement



This Paper Offers a Tuple-level Compressor
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A stand-alone C++ library for compressing row-store OLTP databases  

id gender balance

3 M 19.8 Blitzcrank Compressed Tuple

Compression Decompression

Latency: 2 us/tuple 1 us/tuple

Throughput: 100 MB/s 200 MB/s

Mem: < 10 MB Cpr. Factor:  5 -- 10
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Compression = Modeling + Encoding
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Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Zstandard treats the uncompressed data simply 

as consecutive bytes

High-level semantics are lost (e.g. table schema)

Make sense for General-purpose Compressors



Compression = Modeling + Encoding
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Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Zstandard treats the uncompressed data simply 

as consecutive bytes

High-level semantics are lost (e.g. table schema)

Make sense for General-purpose Compressors

Blitzcrank uses the Semantic Modeling



Compression = Modeling + Encoding
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Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

Highly skewed distribution for attribute values

e.g., few users are male:

P (gender = M) = 0.2

5 F Taylor



Compression = Modeling + Encoding
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Find the features of the uncompressed data

Highly skewed distribution for attribute values

e.g., few users are male:

Correlation between attributes of the same tuple

e.g., all Taylors are female: 

P (gender = F | name = Taylor) = 1

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

P (gender = M) = 0.2

5 F Taylor



Compression = Modeling + Encoding

11

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Semantic Model for gender

Semantic Model for name

P (gender = F | name = Taylor) = 1

P (name = Alex) = 0.4

P (name = Taylor) = 0.6

P (gender = F | name = Alex) = 0.5
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Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Semantic Model for gender

Semantic Model for name

P (gender = F | name = Taylor) = 1

P (name = Alex) = 0.4

P (name = Taylor) = 0.6

P (gender = F | name = Alex) = 0.5

P (gender, name) = P (name) × P (gender | name)

Compression = Modeling + Encoding



Semantic Models in Blitzcrank
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A Semantic Model Probability IntervalAttribute Value

Code

Translate

Inv-Translate

Alex

[0, 0.4)

0.25
O (1)



Semantic Models in Blitzcrank
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Probability IntervalAttribute Value

Code
Alex

[0, 0.4)

0.25

Categorical Numerical String Time-series JSON

Various Semantic Models

A Semantic Model

Translate

Inv-Translate

O (1)



Compression = Modeling + Encoding
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Encode the data using learned semantic models

F Alex
Semantic Model for gender

Semantic Model for name

Coding AlgorithmA Bitstream with - log2 P (gender, name) bits

e.g., Arithmetic Coding

Probability Intervals



Encoding of Arithmetic Coding
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Semantic Model for gender

Semantic Model for name

gender name

F Alex
[0.5, 1)[0, 0.4)



Encoding of Arithmetic Coding
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Semantic Model for gender

Semantic Model for name
P (name = Alex) = 0.4 P (name = Taylor) = 0.6

P (gender = M) = 0.5 P (gender = F) = 0.5

P (gender = F) = 1

0 1

0.4 1

0 0.4

gender name

F Alex
⊗ [0.2, 0.4)[0, 0.4)

Numerous floating-point calculations

[0.5, 1)



Encoding of Arithmetic Coding
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Semantic Model for gender

Semantic Model for name
P (name = Alex) = 0.4 P (name = Taylor) = 0.6

P (gender = M) = 0.5 P (gender = F) = 0.5

P (gender = F) = 1

0 1

0.4 1

0 0.4

gender name

F Alex
⊗ [0.2, 0.4)[0, 0.4) [0.5, 1) (.010)2

Numerous floating-point calculations



Arithmetic Coding vs. Delayed Coding
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Floating-point Calculation Simple Integer Probability

⊗[0, 0.4) [0.5, 1) [0, 6) [8, 16)e.g., 4-bit integer

Variable-length Code
(.00)2

Fixed-length Code

with near-entropy performance
[0, 0.4)

[0.5, 1) (.1)2



Options of Fixed-length Codes 
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gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2) [3/16, 1/4)



Options of Fixed-length Codes 
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gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2)

[1, 4)

[3/16, 1/4)

[2, 8) [3, 4)



Options of Fixed-length Codes 
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gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2)

[1, 4)

Fixed-length (4-bit) Code

[3/16, 1/4)

[2, 8) [3, 4)

0001 0010 0011

For an interval [L, R), any 4-bit integer in this interval can be used as the code



Options of Fixed-length Codes 
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gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2)

[1, 4)

Fixed-length (4-bit) Code

12 bits:7.8 bits, Waste Many Bits

[3/16, 1/4)

[2, 8) [3, 4)

0001 0010 0011

Bitstream (0001 0010 1001)2 

Interval Entropy in bits 2.4 1.4 4

For an interval [L, R), any 4-bit integer in this interval can be used as the code



Code Selection itself Carries Information
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[1, 4)

We have 3 code options for an interval [1, 4) 

1,  2,  3

[2, 8) [3, 4)

We have 6 code options for an interval [2, 8) 

2,  3,  4,  5,  6,  7

Code 1 Code 2 State

1 2 0

1 3 1

… … …

3 6 16

3 7 17



Code Selection itself Carries Information
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[1, 4)

We have 3 code options for an interval [1, 4) 

1,  2,  3

[2, 8) [3, 4)

We have 6 code options for an interval [2, 8) 

2,  3,  4,  5,  6,  7

We can use the first two intervals to represent the third interval

Offer 18 states Require 16 states

Code 1 Code 2 State

1 2 0

1 3 1

… … …

3 6 16

3 7 17



Encode Three Intervals Using Two 4-bits

18

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

N = a3b6 = a × 6 + b

[1, 4) [2, 8) [3, 4)

Radix 3 6



Encode Three Intervals Using Two 4-bits
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The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

N = a3b6 = a × 6 + b

[1, 4) [2, 8) [3, 4)

Radix 3 6

Initial Code 0001 0010 0011 (3)

3 = 0336 = 0 × 6 + 3Digits (a, b) 0 3



Encode Three Intervals Using Two 4-bits

18

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

N = a3b6 = a × 6 + b

[1, 4) [2, 8) [3, 4)

Radix 3 6

Initial Code 0001 0010

3 = 0336 = 0 × 6 + 3Digits (a, b) 

Selected Code 2 + 3

0 3

1 + 0

(0001                 0101)2Resulting Bitstream

0011 (3)



Encoding of Delayed Coding
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[1, 4) [2, 8) [3, 4)

2.4 bits 1.4 bits 4 bits

Step 1



Encoding of Delayed Coding
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[1, 4) [2, 8) [3, 4)

2.4 bits 1.4 bits 4 bits

It uses 8 bits to represent three intervals, with a total entropy of 7.8 bits

Step 1

Step 2 Resulting Code: (0001 0101)2  



Decoding of Delayed Coding
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Step 1

Information Buffer

Step 2

Step 2

Decoding Input: 

Code Value



Decoding of Delayed Coding
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Step 1

Information Buffer

Step 2

Step 3

Decoding Input: 

Code Value



Decoding of Delayed Coding
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Step 1 ⟹ name = Tom

Information Buffer

Step 2

Step 3

Decoding Input: 

Code Value



Decoding of Delayed Coding

20

Step 1 ⟹ name = Tom

Information Buffer

Step 2 ⟹ gender = F

Step 3

Decoding Input: 

Code Value



Decoding of Delayed Coding
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Step 1 ⟹ name = Tom

Information Buffer

Step 2 ⟹ gender = F

Step 3 ⟹ age = 21

Decoding Input: 

Code Value

F Tom 21Decoding Result: 



Applying Entropy Coding to Real Systems?
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OLTP Compression Takeaways
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Modern Entropy Coding is very Fast

Compression Granularity is the Key Factor for OLTP

Source: https://github.com/YimingQiao/Blitzcrank
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