
Blitzcrank: Fast Semantic Compression for
In-Memory Online Transaction Processing

Yiming Qiao, Yihan Gao, Huanchen Zhang

Tsinghua University

In-Memory Compression Matters

2

In-memory Databases are faster than On-disk Databases

Cache Memory SSD

1ns 80ns 105ns

3

In-memory Databases are faster than On-disk Databases

Memory is an expensive and limited resource.

[ASPLOS’23, Meta]
Datacenter Power Hardware Cost

Memory Percentage 33.3% 37.1%

Cache Memory SSD

1ns 80ns 105ns

In-Memory Compression Matters

Prior Work Focuses on Column Store

4

id

1

2

3

4

5

6

7

8

9

10

gender

M

M

M

M

F

M

F

M

M

M

Data of the same data type is stored together

Lightweight Encodings (e.g., RLE, FSST, LeCo)

Prior Work Focuses on Column Store

4

id

1

2

3

4

5

6

7

8

9

10

gender

M

M

M

M

F

M

F

M

M

M

Data of the same data type is stored together

Lightweight Encodings (e.g., RLE, FSST, LeCo)

Analytical workloads are read-mostly with large

batched processing.

Select gender, Count(*)
 From user
 Group By gender

SIMD (e.g., Arrow, Parquet, FastLanes)

Row-Store Compression is the Missing Piece

5

Column-level Compression Does not Work
id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Similar data is stored separately

Row-Store Compression is the Missing Piece

5

Column-level Compression Does not Work
id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Similar data is stored separately

A Tuple is Too Small to Compress

Compressor 25 bytes

ZSTD 1.1×

Row-Store Compression is the Missing Piece

5

Column-level Compression Does not Work
id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Similar data is stored separately

A Block is Large Enough to Compress

Compressor 25 bytes 100 KB

ZSTD 1.1× 9.6×

Block Compressor Has High Access Latency

6

Compression Factor

Compression Throughput

id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

Block Compressor Has High Access Latency

6

Tuple Random-access Latency

Compression Factor

Block Compressor (e.g., ZSTD) must decompress the entire

compression block to access a single tuple

Compression Throughput

id gender balance

2 M 22.5

3 M 19.8

4 M 10.5

5 F 6.2

1 M 19.8

6 M 8.4

This Paper Offers a Tuple-level Compressor

7

A stand-alone C++ library for compressing row-store OLTP databases

Transaction Latency

D
a

ta
b

a
s
e

 S
iz

e
Uncompressed

Zstandard

This Paper: Pareto Improvement

This Paper Offers a Tuple-level Compressor

8

A stand-alone C++ library for compressing row-store OLTP databases

id gender balance

3 M 19.8 Blitzcrank Compressed Tuple

Compression Decompression

Latency: 2 us/tuple 1 us/tuple

Throughput: 100 MB/s 200 MB/s

Mem: < 10 MB Cpr. Factor: 5 -- 10

Compression = Modeling + Encoding

9

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Compression = Modeling + Encoding

9

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Zstandard treats the uncompressed data simply

as consecutive bytes

High-level semantics are lost (e.g. table schema)

Make sense for General-purpose Compressors

Compression = Modeling + Encoding

9

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Zstandard treats the uncompressed data simply

as consecutive bytes

High-level semantics are lost (e.g. table schema)

Make sense for General-purpose Compressors

Blitzcrank uses the Semantic Modeling

Compression = Modeling + Encoding

10

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

Highly skewed distribution for attribute values

e.g., few users are male:

P (gender = M) = 0.2

5 F Taylor

Compression = Modeling + Encoding

10

Find the features of the uncompressed data

Highly skewed distribution for attribute values

e.g., few users are male:

Correlation between attributes of the same tuple

e.g., all Taylors are female:

P (gender = F | name = Taylor) = 1

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

P (gender = M) = 0.2

5 F Taylor

Compression = Modeling + Encoding

11

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Semantic Model for gender

Semantic Model for name

P (gender = F | name = Taylor) = 1

P (name = Alex) = 0.4

P (name = Taylor) = 0.6

P (gender = F | name = Alex) = 0.5

11

Find the features of the uncompressed data

id gender name

2 M Alex

3 F Alex

4 F Taylor

1 F Taylor

5 F Taylor

Semantic Model for gender

Semantic Model for name

P (gender = F | name = Taylor) = 1

P (name = Alex) = 0.4

P (name = Taylor) = 0.6

P (gender = F | name = Alex) = 0.5

P (gender, name) = P (name) × P (gender | name)

Compression = Modeling + Encoding

Semantic Models in Blitzcrank

12

A Semantic Model Probability IntervalAttribute Value

Code

Translate

Inv-Translate

Alex

[0, 0.4)

0.25
O (1)

Semantic Models in Blitzcrank

12

Probability IntervalAttribute Value

Code
Alex

[0, 0.4)

0.25

Categorical Numerical String Time-series JSON

Various Semantic Models

A Semantic Model

Translate

Inv-Translate

O (1)

Compression = Modeling + Encoding

13

Encode the data using learned semantic models

F Alex
Semantic Model for gender

Semantic Model for name

Coding AlgorithmA Bitstream with - log2 P (gender, name) bits

e.g., Arithmetic Coding

Probability Intervals

Encoding of Arithmetic Coding

14

Semantic Model for gender

Semantic Model for name

gender name

F Alex
[0.5, 1)[0, 0.4)

Encoding of Arithmetic Coding

14

Semantic Model for gender

Semantic Model for name
P (name = Alex) = 0.4 P (name = Taylor) = 0.6

P (gender = M) = 0.5 P (gender = F) = 0.5

P (gender = F) = 1

0 1

0.4 1

0 0.4

gender name

F Alex
⊗ [0.2, 0.4)[0, 0.4)

Numerous floating-point calculations

[0.5, 1)

Encoding of Arithmetic Coding

14

Semantic Model for gender

Semantic Model for name
P (name = Alex) = 0.4 P (name = Taylor) = 0.6

P (gender = M) = 0.5 P (gender = F) = 0.5

P (gender = F) = 1

0 1

0.4 1

0 0.4

gender name

F Alex
⊗ [0.2, 0.4)[0, 0.4) [0.5, 1) (.010)2

Numerous floating-point calculations

Arithmetic Coding vs. Delayed Coding

15

Floating-point Calculation Simple Integer Probability

⊗[0, 0.4) [0.5, 1) [0, 6) [8, 16)e.g., 4-bit integer

Variable-length Code
(.00)2

Fixed-length Code

with near-entropy performance
[0, 0.4)

[0.5, 1) (.1)2

Options of Fixed-length Codes

16

gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2) [3/16, 1/4)

Options of Fixed-length Codes

16

gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2)

[1, 4)

[3/16, 1/4)

[2, 8) [3, 4)

Options of Fixed-length Codes

16

gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2)

[1, 4)

Fixed-length (4-bit) Code

[3/16, 1/4)

[2, 8) [3, 4)

0001 0010 0011

For an interval [L, R), any 4-bit integer in this interval can be used as the code

Options of Fixed-length Codes

16

gender name age

F Tom 21
[1/16, 1/4) [1/8, 1/2)

[1, 4)

Fixed-length (4-bit) Code

12 bits:7.8 bits, Waste Many Bits

[3/16, 1/4)

[2, 8) [3, 4)

0001 0010 0011

Bitstream (0001 0010 1001)2

Interval Entropy in bits 2.4 1.4 4

For an interval [L, R), any 4-bit integer in this interval can be used as the code

Code Selection itself Carries Information

17

[1, 4)

We have 3 code options for an interval [1, 4)

1, 2, 3

[2, 8) [3, 4)

We have 6 code options for an interval [2, 8)

2, 3, 4, 5, 6, 7

Code 1 Code 2 State

1 2 0

1 3 1

… … …

3 6 16

3 7 17

Code Selection itself Carries Information

17

[1, 4)

We have 3 code options for an interval [1, 4)

1, 2, 3

[2, 8) [3, 4)

We have 6 code options for an interval [2, 8)

2, 3, 4, 5, 6, 7

We can use the first two intervals to represent the third interval

Offer 18 states Require 16 states

Code 1 Code 2 State

1 2 0

1 3 1

… … …

3 6 16

3 7 17

Encode Three Intervals Using Two 4-bits

18

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

N = a3b6 = a × 6 + b

[1, 4) [2, 8) [3, 4)

Radix 3 6

Encode Three Intervals Using Two 4-bits

18

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

N = a3b6 = a × 6 + b

[1, 4) [2, 8) [3, 4)

Radix 3 6

Initial Code 0001 0010 0011 (3)

3 = 0336 = 0 × 6 + 3Digits (a, b) 0 3

Encode Three Intervals Using Two 4-bits

18

The first two intervals form a 2-digit mixed-radix (3, 6) numeral system

N = a3b6 = a × 6 + b

[1, 4) [2, 8) [3, 4)

Radix 3 6

Initial Code 0001 0010

3 = 0336 = 0 × 6 + 3Digits (a, b)

Selected Code 2 + 3

0 3

1 + 0

(0001 0101)2Resulting Bitstream

0011 (3)

Encoding of Delayed Coding

19

[1, 4) [2, 8) [3, 4)

2.4 bits 1.4 bits 4 bits

Step 1

Encoding of Delayed Coding

19

[1, 4) [2, 8) [3, 4)

2.4 bits 1.4 bits 4 bits

It uses 8 bits to represent three intervals, with a total entropy of 7.8 bits

Step 1

Step 2 Resulting Code: (0001 0101)2

Decoding of Delayed Coding

20

Step 1

Information Buffer

Step 2

Step 2

Decoding Input:

Code Value

Decoding of Delayed Coding

20

Step 1

Information Buffer

Step 2

Step 3

Decoding Input:

Code Value

Decoding of Delayed Coding

20

Step 1 ⟹ name = Tom

Information Buffer

Step 2

Step 3

Decoding Input:

Code Value

Decoding of Delayed Coding

20

Step 1 ⟹ name = Tom

Information Buffer

Step 2 ⟹ gender = F

Step 3

Decoding Input:

Code Value

Decoding of Delayed Coding

20

Step 1 ⟹ name = Tom

Information Buffer

Step 2 ⟹ gender = F

Step 3 ⟹ age = 21

Decoding Input:

Code Value

F Tom 21Decoding Result:

Applying Entropy Coding to Real Systems?

21

D
a

ta
b

a
s
e

 S
iz

e
 (

G
B

)

0

10

20

30

40

50

60

T
h
ro

u
g

h
p

u
t

(t
x
n
/s

)

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

Origin ZSTD Blitz Origin ZSTD Blitz

80% Smaller 20% Lower

OLTP Compression Takeaways

22

Modern Entropy Coding is very Fast

Compression Granularity is the Key Factor for OLTP

Source: https://github.com/YimingQiao/Blitzcrank

	Slide 1: Blitzcrank: Fast Semantic Compression for In-Memory Online Transaction Processing
	Slide 2: In-Memory Compression Matters
	Slide 3: In-Memory Compression Matters
	Slide 4: Prior Work Focuses on Column Store
	Slide 5: Prior Work Focuses on Column Store
	Slide 6: Row-Store Compression is the Missing Piece
	Slide 7: Row-Store Compression is the Missing Piece
	Slide 8: Row-Store Compression is the Missing Piece
	Slide 9: Block Compressor Has High Access Latency
	Slide 10: Block Compressor Has High Access Latency
	Slide 11: This Paper Offers a Tuple-level Compressor
	Slide 12: This Paper Offers a Tuple-level Compressor
	Slide 13: Compression = Modeling + Encoding
	Slide 14: Compression = Modeling + Encoding
	Slide 15: Compression = Modeling + Encoding
	Slide 16: Compression = Modeling + Encoding
	Slide 17: Compression = Modeling + Encoding
	Slide 18: Compression = Modeling + Encoding
	Slide 19: Compression = Modeling + Encoding
	Slide 20: Semantic Models in Blitzcrank
	Slide 21: Semantic Models in Blitzcrank
	Slide 22: Compression = Modeling + Encoding
	Slide 23: Encoding of Arithmetic Coding
	Slide 24: Encoding of Arithmetic Coding
	Slide 25: Encoding of Arithmetic Coding
	Slide 26: Arithmetic Coding vs. Delayed Coding
	Slide 27: Options of Fixed-length Codes
	Slide 28: Options of Fixed-length Codes
	Slide 29: Options of Fixed-length Codes
	Slide 30: Options of Fixed-length Codes
	Slide 31: Code Selection itself Carries Information
	Slide 32: Code Selection itself Carries Information
	Slide 33: Encode Three Intervals Using Two 4-bits
	Slide 34: Encode Three Intervals Using Two 4-bits
	Slide 35: Encode Three Intervals Using Two 4-bits
	Slide 36: Encoding of Delayed Coding
	Slide 37: Encoding of Delayed Coding
	Slide 38: Decoding of Delayed Coding
	Slide 39: Decoding of Delayed Coding
	Slide 40: Decoding of Delayed Coding
	Slide 41: Decoding of Delayed Coding
	Slide 42: Decoding of Delayed Coding
	Slide 43: Applying Entropy Coding to Real Systems?
	Slide 44: OLTP Compression Takeaways

