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Abstract—Distributed machine learning has gained lots of
attention due to the rapid growth of data. In this paper, we
focus regularized empirical risk minimization problems, and
propose two novel Distributed Accelerated Alternating Direction
Method of Multipliers (D-A2DM2) algorithms for distributed
classification. Based on the framework of Alternating Direction
Method of Multipliers (ADMM), we decentralize the distributed
classification problem as a global consensus optimization problem
with a series of sub-problems. In D-A2DM2, we exploit ADMM
with variance reduction for sub-problem optimization in paral-
lel. Taking global update and local update into consideration
respectively, we propose two acceleration mechanisms in the
framework of D-A2DM2. In particular, inspired by Nesterov’s
accelerated gradient descent, we utilize it for global update to
further improve time efficiency. Moreover, we also introduce
Nesterov’s acceleration for local update, and develop the cor-
rected local update and symmetric dual update to accelerate
the convergence with only a little change in the computational
effort. Theoretically, D-A2DM2 has a linear convergence rate.
Empirically, experimental results show that D-A2DM2 converge
faster than existing distributed ADMM-based classification, and
could be a highly efficient algorithm for practical use.

Index Terms—ADMM, Nesterov’s Acceleration, Distributed
Classification, Accelerated ADMM

I. INTRODUCTION

Distributed machine learning becomes increasingly impor-

tant in this big data era. Moreover, the data in many big data

applications is usually generated and stored in a decentralized

fashion over different machines. This is particularly natural

for processing large data on a computer cluster. In particular,

distributed classification has become a crucial research topic

in distributed machine learning [1], which takes advantage of

the computational power of multi-machines to solve the opti-

mization problem in a distributed manner [2]. In recent years,

many algorithms have been proposed for solving distributed

*Dr. Jing Zhang is the corresponding author of this paper. The work is
supported by the National Natural Science Foundation of China under Grants
(61806096, 91846104, 61702264) and the Natural Science Foundation of
Jiangsu Province, China, under Grant (BK20160843).

learning problems [3]–[5]. Specifically, Alternating Direction

Method of Multipliers (ADMM) is a widely-used optimization

algorithm in machine learning due to its flexibility in distribut-

ed computation [6].
Distributed ADMM is an iterative method which involves

the computation time for optimizing sub-problems that hap-

pens locally on each node, and the communication time of

information between nodes. Generally, communication be-

tween nodes is unavoidable and its cost will be significantly

large. It has been observed empirically that distributed ADMM

usually converges slowly and suffers from high time cost

[7]–[9], which will create a new bottleneck for consensus

optimization. As a consequence, the development of effi-

cient distributed ADMM algorithms simultaneously improve

computational efficiency and communication efficiency is an

important problem. Unfortunately, this issue has not been well

investigated in previous literatures.
In order to address these aforementioned issues, in this

paper, we focus on ADMM-based distributed classification

problems, and propose two novel Distributed Accelerated

ADMM (D-A2DM2) algorithms that can learn new distributed

classification models. Specifically, we extend an acceleration

strategy for global update mainly motivated by Nesterov’s

Acceleration (NA) to accelerate the convergence. Furthermore,

we integrate ADMM with stochastic dual coordinate ascent

method (SDCA), for sub-problem optimization in parallel.

Taking local update into consideration, we exploit Nesterov’s

Acceleration (NA) for sub-problem optimization and develop

the corrected local update and symmetric dual update to

further improve the convergence. We investigate the theoretical

analysis and the performance of our proposed algorithms.

Experiments on various datasets empirically validate that D-

A2DM2 outperforms distributed ADMM-based classification

algorithms. The main contributions of our work are summa-

rized as follows:

• Two efficient algorithms are proposed for distributed
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classification. In the framework of D-A2DM2, acceler-

ated methods and corrected schemes are integrated with

distributed ADMM to improve time efficiency of local

computation and communication.

• We present the convergence analysis of D-A2DM2. The

NA method can be well integrated with distributed AD-

MM to accelerate the convergence rate.

• The experimental results verify that D-A2DM2 converges

faster than distributed ADMM-based classification algo-

rithms, and thus can improve time efficiency. D-A2DM2

could be an effective and efficient algorithm for practical

use on large-scale data.

The rest of this paper is organized as follows. Section II

presents related work, followed by problem statement in Sec-

tion III. Afterward, we describe the details of our algorithms

in Section IV. The experimental results are showed in Section

V. Finally, we present the conclusion in Section VI.

II. RELATED WORK

In this section, we briefly discuss and give a overview

of the mainly related work in both accelerated ADMM and

distributed ADMM for classification.

A. Accelerated ADMM algorithms

Theoretical anlysis on ADMM has revealed that it has a

O(1/k) convergence rate, where k is the number of ADMM

iterations [10], [11]. In recent years, variance reduction with

stochastic sampling and Nesterov’s acceleration method have

been used to accelerate the convergence of ADMM.

Variance Reduction (VR): It is well known that the

variance produced by stochastic sampling makes stochastic

algorithms have a slower convergence rate than batch algo-

rithms. To alleviate this problem, many variance reduction

methods have been proposed to improve the convergence speed

of ADMM [12], [13]. we focus on the method proposed in

[12], which solves problem optimization on its dual form of

the original problem. That is, in each inner loop, a randomly

sampled instance i is used to update the related coordinate.

Nesterov’s Acceleration (NA): Nesterov proposed an ac-

celeration scheme for gradient methods in [14]. In particular,

one or several auxiliary variables are introduced to update the

parameter with respect to the the gradient at the current auxil-

iary variable. Recently, Nesterov-type acceleration method has

been integrated with ADMM to improve the convergence [6].

B. Distributed ADMM for Classification

In the literature, distributed ADMM has been widely-used

for distributed machine learning due to its flexibility towards

distributed computation [15]. In particularly, Zhang et al.
proposed distributed classification algorithms via ADMM to

solve linear SVM problems [16]. Also, distributed ADM-

M was extended to train the linear classifier for specific

tasks [17]. Nevertheless, these distributed ADMM algorithms

usually converge slowly, and are time-consuming [7], [18].

Recently, various versions of stochastic ADMM were proposed

to improve communication-efficient in [19], [20]. Besides,

Wang et al. recently proposed a group-based ADMM method

(GADMM) to accelerate the convergence speed, which relaxes

global consensus condition, but an additional communication

cost is needed in each communication iteration [8].

It has been shown that VR or NA methods can accelerate

ADMM convergence. However, the parallelization of these

methods has not been well investigated. Distributed ADMM

usually converges slowly in practical use, and the above works

lack of efforts in studying accelerated methods integrated with

distributed ADMM. This is exactly what we are going to do

in this paper.

III. PROBLEM STATEMENT

The Alternating Direction Method of Multipliers (ADMM)

is a powerful optimization algorithm and has recently gained

lots of attention in many applications [16]. Specifically, AD-

MM solves optimization problems of the form:

min
x,z

f(x) + g(z),

s.t. Ax+Bz = C,
(1)

where x ∈ R
Nx and z ∈ R

Nz are variables, f(x) and g(z)
are two convex functions. A ∈ R

Nc×Nx , B ∈ R
Nc×Nz and

c ∈ R
Nc are used to impose the linear constraints. Assume that

the data are stored on N nodes respectively, if function f(x)
is a loss function, which is separable with respect to variable

x, f(x) can be decomposed into N components. Hence, these

empirical risk minimization problems can be easily casted into

an distributed ADMM form:

min
xi,...,xn,y

N∑
i=1

fi(xi) + g(y),

s.t. xi = y, i = 1, 2, . . . , N

(2)

where each fi the local function which involves only the

samples on node i. xi and y are the local variable and global

variable, respectively. Given a penalty parameter ρ > 0, the

global consensus problem can be solved equally by optimizing

its augmented Lagrangian defined as:

Lρ(x, y, λ) =
N∑
i=1

fi(xi) + g(y) +
N∑
i=1

λT
i (xi − y)

+
ρ

2

N∑
i=1

‖xi − y‖2,
(3)

where x = {x1, . . . , xN} and λ = {λ1, . . . , λN}. λi is the La-

grangian multiplier (dual variable). Moreover, the augmented

Lagrangian also can be reformed in a scaled form as follows:

Lρ(x, y, u) =
N∑
i=1

fi(xi) + g(y) +
ρ

2

N∑
i=1

‖xi − y + ui‖2,
(4)

where ui =
λi

ρ and ui is the dual variable. Distributed ADMM

can be easily implemented in a computer cluster with one

master and N workers (nodes).
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IV. DISTRIBUTED ACCELERATED ADMM

The core idea of our proposed algorithms is that we cau-

tiously study distributed ADMM-based framework and pro-

pose efficient accelerated strategies to improve classification

performance. In the following, the details will be presented.

A. Framework of D-A2DM2

The classification problem over a computer network can be

formulated as a global consensus problem in ADMM form as:

min
xi,...,xN ,y

N∑
i=1

li∑
j=1

C ∗ ξ(xi, aj , bj) + g(y),

s.t. xi = y, i = 1, 2, . . . , N,

(5)

where g(y) = 1
2‖y‖2,

∑li
j=1 C ∗ ξ(xi, aj , bj) is the loss

function and li is the number of samples in node i, where

aj is an sample and bj is its label. Therefore, the augmented

Lagrangian function for distributed classification in (5) can be

mathematically formulated as follows:

Lρ(x, y, u) =
N∑
i=1

fi(xi) + g(y) +
ρ

2

N∑
i=1

‖xi − y + ui‖2,
(6)

where fi(xi) =
∑li

j=1 C ∗ξ(xi, aj , bj), and u = 1
ρλ. It is easy

to see that xi and ui can be locally updated on each node.

Because the whole classification problem has been divided

into N sub-problems which can be solved in parallel, our D-

A2DM2 is actually a distributed ADMM framework.

B. Sub-problem Optimization

ADMM alternately minimizes Lρ(x, y, u) with respect to x
and y. Moreover, Lρ(x, y, u) is separable in terms of xi, the

sub-problem of a particular worker i can be rewritten as:

min
xi

Fi(xi) = fi(xi) +
ρ

2
‖xi − v‖2, (7)

where v = ŷk + ûk
i at the k-th ADMM iteration, and ûi is the

auxiliary variable for dual update. Although the sub-problem

in (7) is different from traditional machine learning problems,
ρ
2‖xi − v‖2 also is a L2 regularization in terms of xi:

xk+1
i = min

xi

fi(xi) +
ρ

2
‖xi − vk‖2. (8)

The sub-problem can be solved efficiently by widely-used

common optimization methods [21], [22]. In this paper, we

use ADMM with Stochastic Dual Coordinate Ascent (SDCA-

ADMM) for sub-problem optimization [12]. In each inner loop

of SDCA-ADMM, a randomly sampled instance i is used to

update the related coordinate. It also has been proved that the

method has a linear convergence.

C. Accelerated global Update in D-A2DM2

The master waits for collecting the newest xk+1
i s and ûk

i s

from N workers for updating y which is formulated as:

yk+1 = argmin
y

g(y) + r(y), (9)

where r(y)= ρ
2

∑N
i=1‖xk+1

i − y + ûk
i ‖2, which is a L2 reg-

ularization in terms of y. Hence, the global update for y
usually can be efficiently solved. After global update, the

master broadcasts the latest global variable to workers, each

worker waits for the new yk+1 to update dual variable:

uk+1
i = ûk

i + xk+1
i − yk+1. (10)

Inspired by NA method, accelerated global update updates

global and dual variables twice, is shown below:

ûk+1
i = uk+1

i +
ak − 1

ak+1
(uk+1

i − uk
i ),

ŷk+1 = yk+1 +
ak − 1

ak+1
(yk+1 − yk).

After that, the dual variable conveys to worker i how far its

own local variable will agree upon the global consensus. In

summary, the whole process is summarized as Algorithm 1.

Algorithm 1 D-A2DM2 with Accelerated Global Update

Input: datasets: {D1, D2, . . . , DN}, x0, a1 = 1, parameters

(ρ, β, r0, d0), tolerances (εp, εd)

1: while ‖rk‖2>εp or ‖dk‖2>εd do
2: xk+1

i = argminxi
fi(xi) +

ρ
2‖xi − ŷk + ûk

i ‖2
3: yk+1=argminy g(y)+

ρ
2

∑N
i=1‖xk+1

i − y + ûk
i ‖2

4: uk+1
i = ûk

i + xk+1
i − yk+1

5: ak+1 =
1+
√

1+4a2
k

2

6: ûk+1
i = uk+1

i + ak−1
ak+1

(uk+1
i − uk

i )

7: ŷk+1 = yk+1 + ak−1
ak+1

(yk+1 − yk)

8: rk+1 =
∑N

i=1(x
k+1
i − yk+1)

9: dk+1 = ρ(yk+1 − yk)
10: k = k + 1
11: end while
Output: The global variable yk+1

D. Accelerated Local Update in D-A2DM2

We extend an acceleration strategy to accelerate local update

in D-A2DM2 which presents a corrected local update step,

which uses the current result and last local result to further

correct local update, is defined as follows:

xk+1
i = x

k+ 1
2

i + β(x
k+ 1

2
i − x̂k

i ), (11)

where β ∈ (0, 1) is a relaxation factor which can enforce local

variable more stabilized during optimization. Then, before the

update for y, a symmetric dual update similar as that in [23]

is used to update the dual variable as follow:

u
k+ 1

2
i = uk

i + xk+1
i − yk. (12)

The update process in (12) leverages the latest local variable

to alleviate the difference between xis and y, and accelerates

xis into global consensus. Moreover, a predictor-corrector step

by NA method is used to further accelerate local update:

ûk+1
i = uk+1

i +
ak − 1

ak+1
(uk+1

i − uk
i ),
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x̂i
k+1 = xi

k+1 +
ak − 1

ak+1
(xi

k+1 − xi
k).

At each iteration, each work i sends its current corrected local

variable xk+1
i , together with u

k+ 1
2

i to the master for updating

y. Typically, the specific process is described in Algorithm 2.

Algorithm 2 D-A2DM2 with Accelerated Local Update

Input: datasets: {D1, D2, . . . , DN}, x0 = x̂1, a1 = 1,

parameters (ρ, β, r0, d0), tolerances (εp, εd)

1: while ‖rk‖2>εp or ‖dk‖2>εd do
2: x

k+ 1
2

i = argminxi
fi(xi) +

ρ
2‖xi − yk + ûk

i ‖2
3: xk+1

i = x
k+ 1

2
i + β(x

k+ 1
2

i − x̂k
i )

4: u
k+ 1

2
i = ûk

i + xk+1
i − yk

5: yk+1=argminy g(y)+
ρ
2

∑N
i=1‖xk+1

i − y + u
k+ 1

2
i ‖2

6: uk+1
i = u

k+ 1
2

i + xk+1
i − yk+1

7: ak+1 =
1+
√

1+4a2
k

2

8: ûk+1
i = uk+1

i + ak−1
ak+1

(uk+1
i − uk

i )

9: x̂k+1
i = xk+1

i + ak−1
ak+1

(xk+1
i − xk

i )

10: rk+1 =
∑N

i=1(x
k+1
i − yk+1)

11: dk+1 = ρ(yk+1 − yk)
12: k = k + 1
13: end while
Output: The global variable yk+1

E. Convergence Analysis

We present our analysis of the convergence property of

D-A2DM2 with both convex objectives. The augmented La-

grangian function in (2) also can be rewritten as:

Lρ(x, y, λ) = f(x) + g(y) + λT (x− y) +
ρ

2
‖x− y‖2.

(13)

D-A2DM2 iteration gives the theoretical analysis relies on the

optimality conditions of x and y, and presents the convergence

analysis on the optimality of λ.

Lemma 1: For (xk+1, yk+1, λk+1) generated by D-A2DM2

in Algorithm 2, if

xk+1 − yk+1 = 0, yk+1 − yk = 0, (14)

(xk+1, yk+1, λk+1) is a solution point of the problem (2).

Proof: First, by the conditions for x and y updates in

Algorithm 2, we can obtain that

xk+1 − yk+1 = 0, λk+1 = λk+ 1
2 . (15)

Consequently, together with the updates for λk+1 and λk+ 1
2 ,

we get λk = λk+ 1
2 . The primal and dual variables must be

feasible and satisfy the Lagrange multiplier condition. From

the optimality conditions for update steps of x and y in

Algorithm 2, we can derive the useful expressions as:
⎧⎪⎨
⎪⎩

∂f(xk+1) + λ̂k + ρ(xk+1 − yk) = 0, ∀x
∂g(yk+1) + λk+ 1

2 + ρ(xk+1 − yk+1) = 0, ∀y
xk+1 − yk+1 = 0.

(16)

Consequently, together with (15), (10) and (12), we get

⎧⎪⎨
⎪⎩

∂f(xk+1) + λk+1 + ρ(yk+1 − yk) = 0, ∀x
∂g(yk+1) + λk+1 = 0, ∀y
xk+1 − yk+1 = 0.

(17)

By the same way, we can obtain the primal and dual residuals

are rk = xk − yk and dk = ρ(yk − ŷk) in Algorithm 1.

Convergence. It is same as the theoretical analysis in

[24], the optimal λ∗ of D-A2DM2 can be obtained with a

convergence rate of O(1/k2). Moreover, distributed ADMM

has a O(1/k) convergence rate [24]. Therefore, the theoretical

analysis shows that integrated with acceleration methods, D-

A2DM2 has a faster convergence than distributed ADMM.

V. EXPERIMENTS

A. Datasets and Experimental Settings

Six large-scale binary classification datasets: rcv1, kdd-

cup10, kdd10raw, avazu, epsilon and news20 dataset 1 are

adopted for performance evaluation in this paper. Moreover,

all the datasets are normalized for experiments, and the details

of these datasets are tabulated in Table I.

The classification model used in the experiments is the L2-

regularized squared hinge loss SVM model. For parameter

settings, we set the hyperparameter C as constant 1 consistent

with distributed ADMM for fair comparison. Parameters ρ
and α can be empirically well chosen, we can set them as

1 and 1.6 in all experiments. The total time (Ttime) is all the

time taken in the training process. The running time (Rtime)

is the computational time (Ctime) taken for sub-problem

optimization in workers, while the communication time is the

information transfer and synchronization. In addition to the

above mentioned time, the number of outer iterations (Iter)

and accuracy (Acc(%)) are also used as evaluation metrics.

TABLE I
THE DETAILS OF ALL THE DATASETS. l IS THE NUMBER OF SAMPLES, d IS

THE DIMENSION OF SAMPLES

Dataset l d
new20 19, 996 1, 355, 191
epsilon 500, 000 2, 000

rcv1 6, 797, 641 47, 236
kdd10raw 20, 012, 498 1, 163, 024
kddcup10 20, 012, 498 29, 890, 095

avazu 45, 006, 431 1, 000, 000

We implement these algorithms in C++ based on the pub-

licly available parallel platform Message Passing Interface

[25]. Distributed ADMM can be easily implemented in a

computer cluster with one master and N workers. In these

algorithms, 10 computing machines are used as the slave

nodes (workers) in the master-slave mode computer network,

where each machine has an Intel(R) Xeon(R) CPU E5-2650

(2.6Ghz/30M Cache) processor and 64 GB RAM.

1The datasets are available at http://www.csie.ntu.edu.tw/∼cjlin/ libsvm-
tools/datasets/binary.html.
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B. Comparison with Various Distributed ADMM Methods

To validate the performance of our proposed methods, as

well as to compare with distributed ADMM-based algorithms,

we use DCA for sub-problem optimization as the baseline. The

details of the comparison algorithms are described as follows:

• D-ADMM.DCA: It is distributed ADMM in [16], and

DCA is used for sub-problem optimization.

• D-ADMM.DCA1 : In addition to DCA, NA is applied

in distributed ADMM to accelerate convergence.

• D-ADMM.SDCA: In the framework of distributed AD-

MM, SDCA is utilized to alleviate the variance problem.

• D-A2DM2.COM: In the framework of distributed AD-

MM, NA and SDCA are combined to accelerate conver-

gence speed, and improves time efficiency.

TABLE II
PERFORMANCE COMPARISON ON DATASET AVAZU

Iter Rtime Ctime Ttime Acc(%)
D-ADMM.DCA 500.0 1856.5 384.7 2341.6 99.61
D-ADMM.DCA1 164.3 843.2 265.4 1162.5 99.59
D-ADMM.SDCA 500.0 296.6 305.4 645.2 99.49
D-A2DM2.COM 92.6 62.3 78.8 173.5 99.50

TABLE III
PERFORMANCE COMPARISON ON DATASET EPSILON

Iter Rtime Ctime Ttime Acc(%)
D-ADMM.DCA 500.0 763.4 201.6 1038.8 89.76

D-ADMM.DCA1 173.3 314.6 74.6 431.4 89.79
D-ADMM.SDCA 500.0 176.3 101.5 298.7 88.80
D-A2DM2.COM 97.4 43.2 24.6 74.7 88.85

TABLE IV
PERFORMANCE COMPARISON ON DATASET KDD10RAW

Iter Rtime Ctime Ttime Acc(%)
D-ADMM.DCA 500.0 1817.3 1969.5 4023.7 89.14
D-ADMM.DCA1 463.6 1457.3 1542.6 3132.2 89.13
D-ADMM.SDCA 500.0 662.3 587.7 1425.6 88.36
D-A2DM2.COM 386.4 373.8 372.5 813.3 88.28

Time efficiency of local computation First, we investi-

gate the performance of the proposed method with stochas-

tic optimization. We set the inner iteration of DCA and

SDCA in each communication round as 10 and 100 for

comparison. In SDCA, one-tenth samples are chosen randomly

for training. Table II-IV show that distributed ADMM with

SDCA converges faster and improves time efficiency of local

computation than these algorithms only with DCA. In the

experimental results, we find that SDCA can significantly

reduce the running time and communication time with the

acceptable accuracy loss on all datasets. Compared with D-

ADMM.DCA, D-ADMM.SDCA can obviously save up the

total time cost with about 0.1% accuracy loss on datasets. The

main possible reason is that the number of training samples

are very huge, and all the samples need to be trained in each

inner iteration of DCA. Therefore, stochastic ADMM with

SDCA can alleviate the variance problem, and improves the

convergence speed of sub-problem optimization.

Communication efficiency We evaluate the convergence of

our proposed method with Nesterov-type acceleration. Com-

pared with D-ADMM.DCA and D-ADMM.SDCA, we find

that D-ADMM.DCA1 and D-A2DM2.COM integrated with

NA can converges faster and obviously save up the training

time on all datasets in Table II-IV. Moreover, Nesterov-type

acceleration step is proposed to extrapolate ui and update

y twice in distributed ADMM. Therefore, D-ADMM.DCA1

and D-A2DM2.COM can reduce the number of iterations and

simultaneously save up the computational time of local update

in workers and communication time between nodes. Using

the same stochastic ADMM for sub-problem optimization, we

also find that D-ADMM.DCA1 and D-A2DM2.COM can ob-

tain the competitive accuracy compared with D-ADMM.DCA

and D-ADMM.SDCA, respectively. In summary, D-A2DM2

can simultaneously improve computational efficiency through

faster convergence, and is suitable to deal with the distributed

classification problem.

C. Evaluation Performance with Accelerated Local Update

We further discuss Nesterov’s Acceleration for local update.

To evaluate the performance of our proposed algorithm, SDCA

is used for sub-problem optimization for fair comparison. The

comparison ADMM algorithms are showed as:

• D-ADMM: D-ADMM is distributed ADMM based the

framework of distributed ADMM in [16].

• DF-ADMM: It is implemented based on the framework

of fast ADMM in [24].

• D-A2DM2: Nesterov’s Acceleration and two corrected

updates are introduced in the framework.

In experiments, we measure the training performance with

respect to the convergence speed. The relative objective value

difference is defined as follow: [16]

(f − fmin)/fmin, (18)

where f is the primal function value, and fmin is the minimum

function value found by all algorithms.

Training Efficiency Fig. 1 (a-d) show the convergence of

the primal objective value as the number of outer iterations

grows. We can observe that D-A2DM2 can converge faster

than other distributed ADMM algorithms on all datasets. Fur-

thermore, we can find that D-A2DM2 can significantly reduce

the number of outer iterations, and thus save up the training

time. In order to evaluate training efficiency of D-A2DM2 as

well as to compare with the baselines, we adopt the number of

outer iterations, training time and accuracy as the evaluation

metrics. Table V shows that D-A2DM2 converges faster and

meets the stop criterion faster than the baselines, and thus can

reduce the number of outer iterations while achieving almost

the same accuracy. In particularly, we can find that on the

first three datasets with a huge number of samples or higher-

dimension, D-A2DM2 can significantly reduce the number of

outer iterations, and thus can improve time efficiency of local

computation and communication. While for dataset kddcup10,

D-A2DM2 can obtain the comparative performance against
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Fig. 1. Convergence of these algorithms w.r.t the number of ADMM (outer) iterations.

TABLE V
NUMBER OF ITERATIONS (ITER), TOTAL TIME (TTIME) AND ACCURACY (ACC(%)) OF D-A2DM2 COMPARED WITH THE BASELINES.

Dataset
D-ADMM D-A2DM2 DF-ADMM

Iter/Ttime (s) Acc (%) Iter/Ttime (s) Acc (%) Iter/Ttime (s) Acc (%)
rcv1 73.7/6.4 97.76 49.8/4.2 97.75 184.0/14.3 97.75

news20 39.3/48.8 96.97 19.7/25.3 96.95 24.6/32.5 97.07
epsilon 280.2/114.5 89.99 111.5/50.6 89.99 300.0/121.4 89.98

kddcup10 38.6/1050.2 89.07 26.1/788.2 89.05 96.4/2651.4 89.04

with D-ADMM. As the results show, D-A2DM2 is suitable to

solve the distributed classification problem.

VI. CONCLUSION

In this paper, we propose efficient distributed accelerat-

ed alternating direction method of multipliers (D-A2DM2)

algorithms for distributed classification. Unlike traditional

distributed ADMM, ADMM integrated with stochastic dual

coordinate ascent is adopted for sub-problem optimization

in parallel. In particular, we extend an acceleration strategy

motivated by Nesterov’s Acceleration (NA), and exploit two

corrected schemes for local update to accelerate convergence

and improve time efficiency. Our proposed methods have a lin-

ear convergence rate, and significantly saves up the time cost

compared with other distributed ADMM-based classification

algorithms.
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