
Data Chunk Compaction in Vectorized Execution
Yiming Qiao

Tsinghua University
qiaoym21@mails.tsinghua.edu.cn

Huanchen Zhang
Tsinghua University

huanchen@tsinghua.edu.cn

Abstract
Modern analytical database management systems often adopt vec-
torized query execution engines that process columnar data in
batches (i.e., data chunks) to minimize the interpretation overhead
and improve CPU parallelism. However, certain database operators,
especially hash joins, can drastically reduce the number of valid
entries in a data chunk, resulting in numerous small chunks in
an execution pipeline. These small chunks cannot fully enjoy the
benefits of vectorized query execution, causing significant perfor-
mance degradation. The key research question is when and how to
compact these small data chunks during query execution. In this
paper, we first model the chunk compaction problem and analyze
the trade-offs between different compaction strategies. We then
propose a learning-based algorithm that can adjust the compaction
threshold dynamically at run time. To answer the “how” question,
we propose a compaction method for the hash join operator, called
logical compaction, that minimizes data movements when compact-
ing data chunks. We implemented the proposed techniques in the
state-of-the-art DuckDB and observed up to 63% speedup when
evaluated using the Join Order Benchmark, TPC-H, and TPC-DS.

ACM Reference Format:
Yiming Qiao and Huanchen Zhang. 2024. Data Chunk Compaction in
Vectorized Execution. In Proceedings of 2024 International Conference on
Management of Data (SIGMOD’24). ACM, New York, NY, USA, 15 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Vectorized execution refers to the query processing model where
each database operator computes on a vector of tuples (i.e., a data
chunk) rather than a single tuple at a time. Many modern analytical
databases [12, 32, 45, 46, 48] adopt vectorized execution to accelerate
query processing because it reduces the interpretation overhead
and improves CPU parallelism [6]. The vector size is critical to the
overall query performance. If the vector is too large to fit in the
CPU cache, performance will suffer from cache misses. On the other
hand, if the vector contains too few tuples, vectorized execution
will degenerate into the classic volcano model [13] and lose the
aforementioned advantages.

Boncz et al. [6] showed empirically that the optimal size of a
data chunk is in a few thousand tuples (e.g., 2048). Although we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’24, June 03–05, 2018, Woodstock, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

250 500 750 1000 1250 1500 1750 20001
Chunk-reducing Factor

0%

2%

4%

6%

8%

10%

Pe
rc

en
ta

ge

39%

Figure 1: Distribution of the Chunk-Reducing Factor (CRF) -
We executed the JOB on DuckDB and collected the CRF for every
data chunk that goes through a hash join operator. The default
chunk size is 2048. It shows that 39% of all the data chunks have a
CRF of 2048, which means each of them contains only one record.

can initialize the input data chunks to this optimal size, the num-
ber of valid tuples within each chunk can be reduced by certain
operators during query execution [22]. We call these operators
Chunk-Reducing Operators (CROs). The most common CROs are
filters and hash joins. After a data chunk goes through a filter oper-
ator, it updates its selection vector or bitmap and thus reduces its
size effectively [30]. A vectorized hash join implementation takes
a data chunk to probe hash table buckets in parallel [33]. Because
each bucket can contain many items due to repeated values and
hash collisions [44], an input data chunk often generates multiple
(smaller) output chunks with unmatched tuples invalidated after
the hash join.

We define the Chunk-Reducing Factor (CRF) as the chunk size
entering the operator divided by the chunk size exiting the operator.
We executed the Join Order Benchmark (JOB) [27] on DuckDB [36]
and collected the CRF for every data chunk that goes through
a hash join operator. Figure 1 shows the statistics for CRF. We
observe that a majority of the data chunks become significantly
smaller after a hash join, and these smaller chunks lead to increased
interpretation overhead and decreased CPU parallelism for the
downstream operators.

Therefore, compacting small chunks during execution is essential
for the vectorized execution model to achieve superior performance.
However, compacting data chunks involves memory copies, and
such costsmay outweigh the benefits of having proper-sized vectors.
DuckDB handles this trade-off by predefining a size threshold 𝛼 =

128. When an output chunk contains ≤ 𝛼 valid tuples, it is copied
to a buffer chunk, and the buffer chunk is sent to the next operator
when it accumulates enough tuples close to its capacity (i.e., 2048
tuples). This fixed-threshold approach can be inefficient because the
trade-off between interpretation overhead and memory movement
is different for each chunk-reducing operator and is dependent
on the number of subsequent operators in the execution pipeline.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

For example, there is no need to perform chunk compaction if the
operator is at the end of a pipeline (i.e., a sink operator).

In this paper, we investigate when and how to compact small
data chunks efficiently during query execution. We first define the
chunk compaction problem and model the operator’s interpreta-
tion cost and the chunk’s compaction cost. We then answer the
“when” question by introducing a lightweight learning-based algo-
rithm (based on the Multi-Armed Bandit problem) to determine
the compaction threshold dynamically for each CRO at run time.
To approach the “how” question, we propose logical compaction
that avoids unnecessary data movement when compacting small
chunks for vectorized hash join probes. The key idea is to have
separate selection vectors for the columns from both sides of the
join operator within a chunk. We implemented the proposed tech-
niques including learning-based dynamic compaction and logical
compaction in DuckDB, a state-of-the-art analytical database, and
achieved an end-to-end speedup of 11.8%, 6.1%, and 4.6% for all
the queries in Join Order Benchmark (JOB) [27], TPC-DS [10], and
TPC-H [11], respectively. For queries where hash joins have high
CRFs, the performance improvement can be up to 63% compared
to the DuckDB default.

We make four primary contributions in this paper. First, we
define and provide a performance analysis of the chunk compaction
problem. Second, we propose an online learning-based algorithm
for adjusting the compaction threshold of each chunk-reducing
operator. Third, we introduce logical compaction that can minimize
data movement for chunks output by hash join probes. Finally, we
verify in DuckDB that the proposed solutions improve end-to-end
query performance, especially for queries with multiple joins.

2 Background and Related Work
In this section, we offer the essential background on the vectorized
query execution [6, 35] and the vectorized hash join operator [33].

2.1 Vectorized Model
Vectorized execution, typically implementedwith themorsel-driven
parallelism [26], has been widely adopted in modern analytical
databases [4, 9, 12, 28, 36, 40]. The classic Volcano model [13] exe-
cutes queries by calling the Next() interface implemented by each
relational algebra operator to pull one result tuple at a time [35].
However, the fixed overhead of repeatedly invoking the Next()
function is noticeable [18, 29]. The computational primitives in
the operators must support a wide range of data types through
programming techniques such as late-binding methods, function
pointers, or extensive case switches, thereby introducing interpre-
tation overhead [22, 30].

To amortize the interpretation overhead, the vectorized execu-
tion model processes a batch of tuples (e.g., 2048 tuples) for each
call of Next(). The computational primitives are put in a tight for
loop for the tuple batch to fully leverage the parallelism in mod-
ern super-scalar and out-of-order CPUs[14, 16]. Specifically, each
execution pipeline processes a vector (i.e., data chunk) at a time
without the need to materialize the intermediate results. The vector
size greatly impacts query performance: too small vectors cause
the engine to degenerate to the classic Volcano model, while too

large vectors cause excessive cache misses. Prior studies showed
that the optimal vector size is in a few thousand tuples [6].

Each data chunk uses a selection vector or bitmap to identify the
valid tuples [30, 34]. For example, DuckDB [36] and Vectorwise [48]
use a selection vector, while DB2 with BLU [38] employs a selection
bitmap. As shown in Figure 2, the selection vector (1, 3) indicates
that the first and the third tuples are still valid in the data chunk.
Applying a selection vector can avoid unnecessary data copy be-
tween input and output chunks, but the number of valid tuples
within a chunk (i.e., the chunk size) can keep decreasing during
execution.

2.2 Vectorized Hash Join
A scalar lookup in a chaining hash table involves three steps: (1)
hash the tuple’s join key 𝑘1 to find the bucket; (2) compare 𝑘1 to
the first key 𝑘2 in the bucket; (3) if 𝑘1 = 𝑘2, copy the payload to
the result tuple and continue to compare 𝑘1 to the next key in
that bucket. During this processing, if the hash table does not fit
in CPU cache, accessing 𝑘2 from the bucket will cause a cache
miss [42]. Such random memory accesses can easily become the
performance bottleneck of a scalar hash table [22, 44]. One solution
is to radix partition the table according to the join keys so that the
hash table for each partition fits in cache [2, 3, 23, 39]. Although
this approach reduces cache misses for hash table probes, it intro-
duces the additional partitioning step that often dominates the join
performance [2].

A vectorized hash join [26] addresses the above problems by
issuing a batch of hash table probes at once to better utilize the
memory bandwidth [7, 33]. Figure 2 shows an example. A chaining
hash table is constructed for the right-hand-side (RHS) table. To
perform a vectorized hash join, we first hash all the join keys in the
input chunk from the left-hand-side (LHS) table and obtain a vector
of bucket numbers (13, 42, 21, 34, 07, 68, 22). We then issue a batch of
memory reads to load the first item in each of the selected buckets
and compare it to the corresponding input join key(s). The output
is a bitmap (1, 1, 1, 1, 1, 0, 1, 1) indicating if each input join key finds
a match. Finally, we construct the result chunk 1○ by referencing
the input chunk for the LHS columns (zero-copy) and gathering
the payloads from the matching tuples for the RHS columns [21].
The selection vector in this result chunk is SV = (0, 1, 2, 3, 4, 6, 7)
because the 5th input tuple did not find a match.

We repeat the above process for the second item in each selected
bucket. Again, the memory probes are issued in parallel, and the
key comparison result is (0, 1, 0, 1, 0, 0, 0, 0). Consequently, the next
result chunk 2○ contains an SV = (1, 3). This batch-probing process
continues until we reach the end of the bucket with the longest
chain. A key characteristic of the vectorized hash join, therefore,
is that an input/probing chunk can generate multiple smaller out-
put chunks. This is unavoidable mainly because of data skew (i.e.,
repeated join keys) and is independent of hashing schemes.

Trade-off: Chunk Size vs. Zero-copy Benefit. To avoid small
chunks, many databases, such as Apache DataFusion [24] and Cock-
roachDB [46], sacrifice the zero-copy benefit. They copy both the
LHS and RHS columns to produce full output data chunks [19, 20].

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

Input Chunk

Columns SV

0

1

2

3

4

5

6

7

Columns
SV

Columns SV

① ②

Columns SV

RHS Columns

③ Hash Table Buckets

① ② ③

Jo
in

 K
ey

s

ProbeProbe NextNext

Result Chunk Result Chunk Result Chunk

RHS Columns RHS Columns

13

42

21

34

07

89

68

22

0
1
2
7
/
/
/

/

0
1
2
7
/
/
/

/

1

3

/

/

/

/

/

/

0

1

2

3

4

6

7

/

0

1

2

3

4

6

7

/

Valid Tuples: Tuples marked by the SV

Referencing Vector: A vector that holds a reference to data stored in another vector

Real Vector: A vector that directly allocates and manages its own memory

Figure 2: Vectorized Hash Join - Hashes join keys, finds matched tuples, and gathers payloads. LHS columns are zero-copy, while RHS
columns require copying. We call Next() three times to generate three chunks, because the buckets have chains up to length three.

R S

T

U

σ

⋈A

⋈B

⋈C

σ

σ

σ

①

②

③

④ 10 20,000

 10 15,000

 400 30,000

 8000 10,000

of Chunks # of Tuples
1.25 tuples/chunk!

Figure 3: Pipelines of a Joining Query - The chunk becomes
smaller and smaller in the probe pipeline as shown on the left.

On the other hand, DuckDB and Velox prefer the zero-copy ap-
proach. The trade-off of this approach is that it can generate under-
full chunks. DuckDB then predefines a size threshold and only com-
pacts chunks with a number of tuples smaller than the threshold. In
the next section, we analyze the inefficiency of current approaches.

3 The Chunk Compaction Problem
In this section, we formalize the compaction problem by analyzing
the trade-off between the interpretation overhead and the data-
copying cost.

3.1 Motivation
AChunk-Reducing Operator (CRO) refers to an operator that can re-
duce the number of valid entries in a data chunk. The most common
CROs are filters and hash joins. A query pipeline consisting of CROs
can reduce the chunk sizes progressively while generating more
chunks. For example, Figure 3 shows a query plan of joining four
tables 𝑅, 𝑆,𝑇 ,𝑈 on columns 𝐴, 𝐵, and 𝐶 . This plan comprises four
pipelines: three building pipelines 1○- 3○ and one probing pipeline
4○. As shown in the example, pipeline 4○ receives 10 input chunks,
each of 2000 tuples. The filter operator makes the data chunks 3/4
full on average. At the first hash join, the operator produces 400
chunks out of the 10 input chunks with each containing 75 tuples
on average. The next join uses these 400 chunks to probe the hash
table and generates 8000 chunks with a total of only 10,000 tuples,
averaging 1.25 tuples per chunk. Such small data chunks, therefore,
cause significant interpretation overhead for the final hash join.

Compacting smaller chunks into larger ones can reduce the
interpretation overhead for subsequent operators but it involves
allocating new data chunks and copying tuples from the smaller

chunks into them. The decision of when to perform the compaction
depends on balancing the overhead of interpretation and tuple
copying. In general, the smaller the chunk, the greater the benefit
from such compaction.

3.2 Problem Formulation
Consider 𝑛 data chunks with sizes 𝑆 = {𝑑1, · · · , 𝑑𝑛}, where 𝑑𝑖 is
an integer. A chunk can contain a maximum of 𝐷 (𝐷 = 2048 by
default) tuples, i.e., 1 ≤ 𝑑𝑖 ≤ 𝐷 for all 𝑖 . These chunks are processed
by a pipeline with 𝑘 chunk-reducing operators. The pipeline needs
time F𝑘 (𝑑) to process a chunk of size 𝑑 . Let𝑀 denote a compaction
on chunk set 𝑆

𝑀 : 𝑆 → 𝑅 ≜ {𝑑′1, · · · , 𝑑
′
𝑚}

that produces chunk set 𝑅 with a reduced number of chunks (1 ≤
𝑚 ≤ 𝑛) while preserving the total tuple count. Let G(𝑀, 𝑆) denote
the time required for applying the compaction𝑀 on 𝑆 . The goal is
to minimize the total execution time

∑︁
𝑑 ′∈𝑅 F𝑘 (𝑑′) +G(𝑀, 𝑆). Each

operator in a pipeline encounters such a compaction challenge and
must decide when to perform a compaction locally and collectively
establish a globally optimal compaction policy.

Compaction Cost. Let 𝑔(𝑑) denote the time cost of a particular
compaction in 𝑀 where chunks 𝑑𝑖 , · · · , 𝑑 𝑗 are compacted into a
chunk of size 𝑑 ≤ 𝐷 . We model 𝑔(𝑑) in two parts. First, 𝑔 scales
linearly with the total number of tuples in the compacted chunks
because of the per-tuple memory copy cost 𝐶2. Additionally, the
compaction incurs a fixed cost 𝐶1 independent of the chunk size.
Therefore,

𝑔(𝑑) = 𝐶1 + 𝑑 ·𝐶2

For example, as shown in Figure 4, we profiled the compaction
operation in DuckDB and obtained 𝐶1 = 0.25𝜇𝑠 and 𝐶2 = 0.04𝜇𝑠 .

Compute Cost. Let 𝑓 (𝑑) denote the time needed to process a
data chunk of size 𝑑 by a CRO:

𝑓 (𝑑) = 𝐶3 + 𝑑 ·𝐶4

where 𝐶3 represents the interpretation overhead, and 𝐶4 is the per-
tuple computational cost. Figure 4 gives an example of 𝐶3 = 2.4𝜇𝑠
and 𝐶4 = 0.08𝜇𝑠 via profiling the hash-table probes in DuckDB.

Suppose that the number of tuples produced by each operator
is 𝑣 > 0 times the number of input tuples with a Chunk-Reducing
Factor (CRF, defined in Section 1) of 𝑟 ≥ 1. For example, if 𝑣 = 2
and 𝑟 = 4 for an operator, then an input chunk containing 16 valid

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

0 256 512 768 1024
Chunk Size

0

20

40

60

Co
m

pa
ct

io
n

Co
st

 (u
s)

g(d)=C1 +d⋅C2

0 256 512 768 1024
Chunk Size

0

25

50

75

100

125

Pr
ob

in
g

Co
st

 (u
s)

f(d)=C3 +d⋅C4

40 80
0
4
8

Zoom on Y-Intercept

10 20 30
0.0
0.5
1.0
Zoom on Y-Intercept

Figure 4: Parameter Profiling - We measure the fixed and per-
tuple cost of chunk compaction and hash-table probing in DuckDB,
getting 𝐶1 = 0.25𝜇𝑠 , 𝐶2 = 0.04𝜇𝑠 and 𝐶3 = 2.4𝜇𝑠 , 𝐶4 = 0.08𝜇𝑠 .

tuples will produce 16 × 2 = 32 tuples with each output chunk
consisting of 16/4 = 4 tuples. The total number of output chunks
is thus 𝑣 · 𝑟 = 8. Both filters and hash join probes are CROs. A
filter operator typically generates one output chunk (𝑣 · 𝑟 = 1) for
each input chunk, where 1/𝑟 represents the filter selectivity. On the
other hand, a hash join probe can produce multiple result chunks
(𝑣 · 𝑟 ≥ 1) out of an input chunk, as described in Section 2.2.

The time for a 𝑘-CRO pipeline to process an input chunk of size
𝑑 , therefore, is

F𝑘 (𝑑) = 𝐶3 ·
𝑘∑︂
𝑗=1

min{𝑟 𝑗−1, 𝑑} · 𝑣 𝑗−1 +𝐶4 · 𝑑 · 𝑘 (1)

The last term is the per-tuple computing cost, which scales linearly
with the number of tuples and CROs. The first term represents
the interpretation cost. It is calculated based on the number of
small chunks generated by the 𝑗-th operator. The 𝑗-th operator
generates a total of𝑑 ·𝑣 𝑗−1 tuples, distributed across at most (𝑣 ·𝑟) 𝑗−1

chunks. Because the number of chunks cannot exceed the number
of available tuples, the 𝑗-th operator outputs at most min{𝑟 𝑗−1, 𝑑} ·
𝑣 𝑗−1 small chunks.

3.3 A Near-optimal Greedy Strategy
In this section, we introduce a near-optimal greedy strategy, called
Sort Compaction, that compacts small chunks aggressively when-
ever it is beneficial according to the models in Section 3.2. For an
operator’s output chunk set 𝑆 , we first sort the chunks by size in
ascending order (i.e., {𝑑1 ≤, · · · , ≤ 𝑑𝑛}) and create a buffer chunk
𝐵 = {𝑑1} with an initial size 𝑑𝐵 = 𝑑1. We then iterate the chunk
list and try to decide for each chunk 𝑑𝑖 whether to copy it into
the buffer. Note that if the current buffer chunk 𝐵 does not have
enough capacity to hold 𝑑𝑖 (𝑑𝐵 + 𝑑𝑖 > 𝐷), we create a new buffer
chunk that contains 𝑑𝑖 and send the current 𝐵 to the next operator
as input. We define the benefit of compacting 𝑑𝑖 into 𝐵 as

Gains(𝑑𝐵, 𝑑𝑖) ≜ F𝑘 (𝑑𝐵) + F𝑘 (𝑑𝑖) − F𝑘 (𝑑𝐵 + 𝑑𝑖) − 𝑔(𝑑𝑖)

where𝑘 denotes the number of subsequent operators in this pipeline.
F𝑘 (𝑑𝐵) + F𝑘 (𝑑𝑖) and F𝑘 (𝑑𝐵 + 𝑑𝑖) represent the time cost without
and with this particular compaction, respectively. 𝑔(𝑑𝑖) is the time
cost for this compaction.

If Gains(𝑑𝐵, 𝑑𝑖) ≥ 0, we add 𝑑𝑖 to 𝐵 and update 𝑑𝐵 = 𝑑𝐵 + 𝑑𝑖 .
Otherwise, we finish the compaction as the remaining chunks are
all larger than 𝑑𝑖 , therefore, leading to lower gains. We simplify the

Gains function by substituting Equation (1):

Gains(𝑑𝐵, 𝑑𝑖) = (𝐶3 − 𝑔(𝑑𝑖))⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Direct Gain

+
(︂
𝐶3 ·

∑︁𝑘−1
𝑗=1 𝐴 𝑗

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Pipeline-level Gain

(2)

where𝐴 𝑗 = 𝑣 𝑗 ·
{︁
min(𝑟 𝑗 , 𝑑𝐵) + min(𝑟 𝑗 , 𝑑𝑖) − min(𝑟 𝑗 , 𝑑𝐵 + 𝑑𝑖)

}︁
. The

Gains function consists of two terms: 1) theDirect Gain, represent-
ing the immediate benefit to the current operator from reducing its
output chunks by one, and 2) the Pipeline-level Gain, reflecting
the benefit for the subsequent operators. The term 𝐴 𝑗 quantifies
the reduction in output chunks produced by the 𝑗-th operator in
the pipeline when 𝑑𝑖 is compacted with 𝑑𝐵 .

Because of the pipeline-level gain, the position of an operator
within the pipeline affects its compaction policy: the preceding
operators should adopt an aggressive policy, while the subsequent
operators should apply a conservative policy. Specifically, even if
the direct gain for the current operator is negative, compacting
𝑑𝑖 may still be beneficial. This is because it reduces the number
of chunks that subsequent operators must process. For example,
consider a pipeline with two joins (𝑘 = 2) where 𝑆 = {100, 400},
𝑟 = 110, and 𝑣 = 1. Despite a negative direct gain in Gains(100, 400)
(𝐶3 − 𝑔(400) = −13.85), compaction reduces the interpretation
overhead for the subsequent operators: without compaction, the
2nd join processes 210 chunks; with compaction, this number drops
to 110. This reduction of 𝐴1 = 100 chunks leads to a pipeline-level
gain of 𝐶3 · 𝐴1 = 240, resulting in a positive total gain.

3.4 Simulation-Based Analysis
In this section, we introduce three practical compaction strategies.
By simulating different scenarios, we assess the performance of each
strategy, providing insights into their strengths and weaknesses.
We consider the following strategies:
• No Compaction & Full Compaction. No Compaction method
is the simplest approach where no chunk is compacted, while Full
Compaction, on the contrary, compacts all chunks containing
less than 2048 tuples. Apache Data Fusion takes Full Compaction,
which they call batch coalescence [24].

• Binary Compaction. DuckDB employs a compaction strat-
egy where all chunks smaller than a predefined threshold �̂� are
compacted. Given a chunk set 𝑆 , DuckDB initializes an empty
buffer chunk 𝐵, with size 𝑑𝐵 = 0. As we iterate over each chunk
𝑑𝑖 ∈ 𝑆 , if 𝑑𝑖 ≤ �̂� , we add 𝑑𝑖 to 𝐵. When chunk 𝐵 is near-full (i.e.,
𝑑𝐵 ≥ 𝐷 − �̂�), it is sent to the next operator, and 𝐵 is then reset.

• Dynamic Compaction.We assign each operator its own com-
paction threshold, computed based on Section 3.3.We assume any
chunk with more than 𝐷/2 tuples does not require compaction.
Initially, we calculate the optimal threshold 𝛼 ∈ [0, 𝐷/2) such
that Gains(𝐷/2, 𝛼) ≥ 0 and Gains(𝐷/2, 𝛼 + 1) < 0. Chunks con-
taining ≤ 𝛼 valid tuples are then pushed into the buffer chunk,
following the same procedure as the Binary Compaction.
We simulate the chunk compaction problem described in Sec-

tion 3.2 by constructing a pipeline consisting of CROs, each with a
fixed CRF. We set the chunk capacity to 𝐷 = 2048 and the prede-
fined threshold for Binary Compaction to �̂� = 128. The intermediate
relation produced by each operator contains the same number of tu-
ples as the input table (𝑣 = 1), which contains 20 million tuples. We

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

No Full Binary Dynamic Sort
0

100

200

Es
tim

at
ed

 C
os

t

0.0

60.2
20.1

0.0 0.0

132.3

181.9
152.4

132.3 132.3

r=4, k= 3,C1 = 6,C2 = 1,C3 = 60,C4 = 2

Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

100

200

300

Es
tim

at
ed

 C
os

t

0.0

60.2 40.1 20.1 20.1

279.9

181.9 170.7 158.4 150.6

r=16, k= 3,C1 = 6,C2 = 1,C3 = 60,C4 = 2

Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

100

200

300

Es
tim

at
ed

 C
os

t

0.0

60.2 60.2 40.2 40.1

181.9 182.0 162.5 161.9

1470
r=256, k= 3,C1 = 6,C2 = 1,C3 = 60,C4 = 2

Compaction Cost
Compute Cost

Case 1: Low CRF Case 2: Medium CRF Case 3: High CRF

No Full Binary Dynamic Sort
0

200

400

600

800

Es
tim

at
ed

 C
os

t

0.0

600.1

400.1

0.0 0.0

279.9

721.9

530.7

279.9 279.9

r= 16, k=3,C1 = 6,C2 =10,C3 = 60,C4 = 2

Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

500

1000
Es

tim
at

ed
 C

os
t

0.0

800.2
600.1

400.2
200.0

962.5
771.3

572.2 520.6

1520
r= 16, k=4,C1 = 6,C2 =10,C3 = 60,C4 = 2

Compaction Cost
Compute Cost

No Full Binary Dynamic Sort
0

500

1000

1500

Es
tim

at
ed

 C
os

t

0.0

999.8
800.2

600.3

200.0

1202.7
1012.0

813.5
569.9

2760
r= 16, k=5,C1 = 6,C2 =10,C3 = 60,C4 = 2

Compaction Cost
Compute Cost

Case 4: Large Tuple & Shallow Pipeline Case 5: Large Tuple & Medium Pipeline Case 6: Large Tuple & Deep Pipeline

Figure 5: Compaction Simulation - Comparing compaction strategies by varying the CRF and the number of join operators.

vary the CRF (𝑟 = 2, 16, 256) and the operator number (𝑘 = 3, 4, 5) to
analyze the trade-offs between these strategies. We set parameters
𝐶1−4 based on the proportional relationship obtained from Figure 4.
We also consider the case that a table has large tuples, leading to
the increased compaction cost (𝐶2 = 10 instead of 𝐶2 = 1).

In Figure 5, the first row shows that a higher CRF increases the
benefit of compaction. The second row highlights the significant
impact of pipeline depth on the compaction problem. Comparing
Case 2 to Case 4, it is evident that for large tuples, chunk com-
paction hurts the overall performance because of the high costs of
data copying. Figure 5 yields three conclusions. First, compaction
strategies can affect query execution time significantly. Second,
Binary Compaction struggles to handle diverse workloads adap-
tively because it relies on a predefined threshold for all CROs. Third,
Dynamic Compaction, which assigns specific thresholds for each
operator, demonstrates near-optimal performance. For example, in
Case 1, thresholds 𝛼 = {293, 53, 0} are assigned to the pipeline’s
three operators, while in Case 3, 𝛼 = {1024, 53, 0} are used. It agrees
with our analysis in Section 3.3: the earlier the operator is in the
pipeline, the more aggressive its compaction strategy is.

Dynamic Compaction is hardly applicable to real databases as it
relies on the function Gains to compute thresholds 𝛼 , which are af-
fected by both database design (𝐶1−4) and workload characteristics
(𝑘 , 𝑟). In Section 4, we propose a learning-based approach to approx-
imate Dynamic Compaction, estimating 𝛼 without depending on
these parameters. Furthermore, to minimize the substantial costs of
data copying shown in Figure 5, we focus on how to compact chunks
efficiently in Section 5 and introduce logical compaction that can
compact small chunks from hash joins without data copying.

4 Learning Compaction
This section introduces a learning module designed to address the
compaction problem. AlthoughDynamic Compaction, as previously
discussed, is not feasible for real databases, this learning module
serves as an approximation.

Learning-based Solution. The learning module directly esti-
mates 𝛼 from the feedback of execution (i.e., the latency). In morsel-
driven parallelism, data is divided into chunks, with each thread
responsible for fetching and processing a chunk through the entire
pipeline before moving on to the next. Consequently, each chunk
can serve as a sample for a learning algorithm [37]. Our objective
is to determine the optimal threshold 𝛼 ∈ [0, 1024) for each CRO.
In this module, we cast the optimization of selecting the best 𝛼 at
runtime as a multi-armed bandit (MAB) problem [43].

4.1 Multi-Armed Bandits
The MAB problem involves a decision-maker with 𝑟 options, or
“arms,” eachwith uncertain reward probabilities with an expectation
𝜇𝑖 . At each time step, the decision-maker selects an arm and receives
a reward sampled from the associated probability distribution. The
objective is to maximize cumulative reward over time. This requires
the decision-maker to balance the trade-off between exploring arms
to learn their rewards and exploiting arms to get high rewards.

In the pipeline context, each operator faces its ownMAB problem.
It selects a compaction threshold 𝛼 ∈ [0, 2048) to compact its
output small chunks. These chunks are then sent to subsequent
operators. The reward for each arm is related to the execution
latency of the pipeline and the compaction cost. Operators try
different thresholds to select the optimal one, with their decisions
collectively contributing to a global compaction policy.

A probing table may hold up to 20 million tuples, allowing the
operator to explore arms across as many as 20,000 iterations to
gather corresponding rewards. This ample sample size is adequate
for fine-tuning a single parameter, 𝛼 . Additionally, if operators fail
to identify the optimal threshold, they can revert to Binary Com-
paction, using a pre-defined threshold. The performance of Binary
Compaction is the lower bound of the learning approach. Lastly,
the module incurs low overhead, as it merely requires statistics
on the execution times of operators within a pipeline – data that
modern databases already collect when profiling is enabled [36].

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

Rchunk ⋈A σ ⋈Bα1 α2 ⋈Cα3

t3t2

For each chunk from R:

 For each threshold αi: αi = SelectArm(i); // before execution

 For each threshold αi: UpdateArm(i, αi, ti + ... + t3) // after execution

Pipeline Executor

Compaction Learner has interfaces: SelectArm and UpdateArm.

Model 1

Arm Reward Confidence

0 1.2 3

128 1.3 3

1024 2.4 97

Model 2

Arm Reward Confidence

0 1.5 3

128 3.4 123

1024 2.1 13

Model 3

Arm Reward Confidence

0 5.5 879

128 4.8 78

1024 4.1 9

 SelectArm(i): returns the arm with highest reward from the Model i.

UpdateArm(i, αi, latency): updates the arm αi for the Model i.

t1 (Processing Latency)

Figure 6: Learning Module Overview - Each 𝛼 is a dynamic
compactor, fetching the threshold from the Compaction Learner,
and then updating the learner with the execution latency.

4.2 Online Compaction Learning
The Compaction Learner, depicted in Figure 6, optimizes the com-
paction trade-off during query execution. We place one compactor
after each filter and hash join operator, each designated by a thresh-
old 𝛼𝑖 , where 1 ≤ 𝑖 ≤ 3. Before fetching a chunk from table 𝑅,
the executor sets the thresholds for the compactors by invoking
𝛼𝑖 = SelectArm(𝑖). In response, the compaction learner provides a
threshold. After processing the chunk, we measure the pipeline’s
latency to update the compaction learner. Specifically, the 𝑖-th com-
pactor calls UpdateArm(𝑖, 𝛼𝑖 , 𝑡𝑖 + · · · + 𝑡3), where 𝛼𝑖 is the arm used
in the last execution, and 𝑡𝑖 + · · · + 𝑡3 represents the processing
latency of all subsequent operators in the pipeline. This process is
repeated for each chunk until all are processed.

The compaction learner maintains a statistical model for each
compactor. This statistical model consists of three vectors: the
candidate thresholds {𝑥1, · · · , 𝑥𝑎} (Arm), the estimated rewards
{�̂�1, · · · , �̂�𝑎} (Reward), and the frequency with which each thresh-
old is selected {𝑛1, · · · , 𝑛𝑎} (Confidence). For instance, as illustrated
in Figure 6, the model of the first compactor includes candidates:
{0, 128, 1024}. Through processing chunks many times, it estimates
that arm 1024 yields the highest reward. Also, the confidences of
arms 0 and 128 are both 3, indicating that they have been selected
only three times. This limited selection frequency may suggest a
higher estimation error.

SelectArm: Exploration-exploitation Dilemma. Each model
within the compaction learner confronts a dual challenge. On one
hand, it seeks to select the arm with the highest reward, empha-
sizing exploitation. On the other hand, it must explore other arms
to potentially discover more optimal solutions or to enhance the
confidence in its reward estimations, particularly when the initial
confidence is zero. Therefore, a well-designed policy is crucial to
manage this dilemma.

The Upper Confidence Bound (UCB) algorithm is a classic ap-
proach to the multi-armed bandit problem. It selects arm 𝑥 𝑗 based
on the highest value of �̂� 𝑗 +

√︁
(2 ln𝑛)/𝑛 𝑗 , where 𝑛 =

∑︁𝑎
𝑗=1 𝑛 𝑗 and

1 ≤ 𝑗 ≤ 𝑎. As the number of processing times 𝑛 increases, the
second term

√︁
(2 ln𝑛)/𝑛 𝑗 provides less-explored arms with a boost,

even if their estimated reward is low. This property proves benefi-
cial for balancing exploration and exploitation. A fine-tuned version
of UCB takes the measured variance of rewards into account. It
selects arm 𝑗 based on the highest value of√︂

(ln𝑛/𝑛 𝑗) · min(0.25,𝑉𝑗 (𝑛 𝑗)),

where

𝑉𝑗 (𝑑) ≜
(︄

1
𝑑

𝑑∑︂
𝜏=1

𝑋 2
𝑗,𝜏

)︄
− �̄�

2
𝑗,𝑑 +

√︁
(2 ln𝑛)/𝑑,

and 𝑋 𝑗,𝜏 represents the reward of the 𝜏-th attempt of trying arm 𝑗 .
This version places more trials on arms with unstable rewards.

The compactor threshold 𝛼𝑖 lies in [0, 1024]. We discretize this in-
terval and set the candidates as {0, 32, 64, 128, 256, 384, 512, 768, 1024}.
This simplification reduces the parameter space without affecting
overall performance because similar threshold values yield compa-
rable compaction performance. We employ the fine-tuned version
of UCB for the SelectArm function because of the high noise level
in the pipeline execution. Additionally, at the beginning of query
execution, the compaction learner attempts each arm several (e.g.,
8) times to initialize their statistics. Despite resulting in a fixed
overhead, this mechanism enhances the stability of the learner.

UpdateArm: Taking the Moving Average. The compaction
learner receives the execution latency of each chunk, measured in
milliseconds, as feedback. In addressing the Multi-Armed Bandit
(MAB) problem within compaction, we define the reward as the re-
ciprocal of the latency. Initially, the rewards for all arms/thresholds
are set to zero. To update the reward for each arm, we employ a
moving average approach. Specifically, this involves calculating the
average of the most recent 16 reward values for each arm.

One concern is that processing latency may vary greatly, while
the UCB algorithm assumes that the reward should lie in a limited
range. However, this is not problematic for the compaction learner
focusing on the pipeline level. Typically, pipelines in most analytical
queries involve less than four joins. As a result, the latencies – and
consequently the rewards – received by the learner usually range
from 50𝜇𝑠 to 500𝜇𝑠 . This translates to reward values between 2 and
20, a range well-suited for effective handling by the UCB algorithm.

Additionally, to manage complex queries with potentially unsta-
ble latencies, we have implemented a robust monitoring mechanism
capable of handling skewed workloads. The compaction learner
periodically captures a snapshot of the estimated rewards for ev-
ery 𝜂 chunk (𝜂 = 1024 by default). The snapshot is denoted by
𝜇 = {�̂�1, · · · , �̂�𝑎}. After updating an arm 𝑥𝑖 and obtaining a new
snapshot 𝜇′, we check for anomalies by comparing the ratios �̂�′𝑖/�̂�𝑖
and �̂�𝑖/�̂�′𝑖 . If either ratio equals or exceeds 2, we identify an anomaly
and reset the UCB algorithm. This reset involves clearing existing
rewards and confidence levels, and each arm is tested multiple times
(e.g., 8) to reestablish baseline statistics.

4.3 Multi-threading in Learning
The compaction module is designed to be compatible with morsel-
driven parallelism [26]. First, a thread must acquire a lock each
time it accesses the statistics from a compactor model. Second, we
increment the confidence level by one, rather than in the UpdateArm
function. This differentiation is crucial to ensure that when multiple

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

Three Marked Tuples

Col1 Col2

5 a

4 b

3 c

2 d

Col3

@

#

&

%

Col1 Col2 Col3

4 b @

3 c #

4 b &

A Data Chunk with Two SVs

1

2

1

/

1

2

1

/

SV1

1

2

1

/

SV1

0

1

2

/

0

1

2

/

SV2

0

1

2

/

SV2

Figure 7: A Data Chunk Example with Multiple SVs - It uses
SV1 to mark the first two vectors, and SV2 to mark the third.

threads (e.g., 96) simultaneously invoke the SelectArm function,
they do not all select the same arm.

In the multi-threading environment, an interesting phenomenon
occurs. Even when the SelectArm function chooses an arm, say
𝑗 , based on the highest confidence 𝑛 𝑗 – rather than rewards – the
compaction learner is still capable of providing the near-optimal
arm. This happens because threads that select the optimal arm can
process chunks more rapidly, leading to more frequent updates
and, consequently, increased confidence in that arm. This dynamic,
where each thread’s update frequency effectively feeds back into
the learning algorithm, is unique to morsel-driven parallelism.

5 Logical Compaction
In this section, we introduce an operator called compacted vector-
ized compacted hash join. Figure 5 shows that the compaction cost
constitutes a large portion of the overall estimated cost. To address
this, we redesign the data chunk and the hash join operator. The
core idea is that small chunks generated from the same probing
chunk can be compacted logically without actual data copying.

5.1 Data Chunk Design
The current design of a data chunk comprises several data vectors
and a selection vector (or bitmap), where a selection vector (SV)
is a dense, sorted list of row identifiers (RIDs) indicating which
tuples in the batch are valid. The DBMS marks tuples as invalid
by modifying the SV alone, without copying data [30]. Figure 8
provides an example of this chunk design.

A hash join operator must modify the SV and gather the payload,
to generate the result chunks. One idea is to compact chunks during
the chunk generation process. Since all result chunks reference the
same LHS data, we can concatenate their SVs directly. For example,
we concatenate the SVs of the 2nd and 3rd old result chunks in Fig-
ure 8, setting SV = (1, 3, 0, 1, 2, 7). However, this concatenation leads
to RID conflicts in the SV: the term RID = 1 appears twice. The
current chunk design requires that the 1st and 4th tuples are both
placed in the row indexed by RID = 1. For the RHS vectors, however,
placing two different values in the same place is impossible.

We propose a new data chunk design consisting of several data
vectors and multiple extended SVs. Unlike traditional SVs, the ex-
tended SV differs in two ways: (1) it is a dense, unsorted list, and
(2) it can have repeated IDs. Each SV manages a group of vectors
in this data chunk. Figure 7 gives an example of a data chunk with
two SVs. It uses SV1 to mark the first two vectors and uses SV2 to
mark the third vector. Then, for the 𝑖-th valid tuple, its values in
the first two columns are placed in the row indexed by SV1 [𝑖], and
its value in the third column is placed in the row indexed by SV2 [𝑖].
Thus, the chunk represents three valid tuples.

5.2 Compacted Vectorized Hash Join
Figure 8 illustrates the compacted hash join using extended SVs.
Upon receiving a full data chunk from the LHS table, we probe
its join keys, resulting in 8 hash table buckets. Subsequently, we
invoke Next() to retrieve the output chunks.

The first output chunk contains 7 valid tuples. It uses two ex-
tended SVs: one for the LHS vectors/columns and the other for
the RHS vectors. For the LHS vectors, we employ the zero-copy
technique, referencing the data in the probing chunk. For the RHS
vectors, payloads must be copied sequentially from the hash table,
and these do not necessarily align with those in the LHS vectors
of the same row. Since a chunk can hold up to 8 tuples, the 2nd
result chunk, containing 2 tuples, cannot be compacted with the
1st chunk. Therefore, we directly output the first chunk as-is.

The 2nd and 3rd chunks have 2 and 4 tuples, respectively. We
can compact them into a larger chunk. The second chunk follows
the same format as the first, as shown by the transparent part in
Figure 8. It has 2 valid tuples, with separate SVs for the LHS and RHS
vectors. As for the 3rd chunk, instead of allocating new memory for
it, we directly write its data into the 2nd data chunk. This decision
is motivated by the fact that they hold the reference to the same
vector. We can directly concatenate their SVs for the LHS columns
without data copying. In Figure 8, the tuples indexed by (0, 1, 2, 3, 7)
are selected at least once in the SV of the 1st or 2nd chunks.

For the RHS columns, we gather the 3rd chunk’s payload from
the hash table and append it to the RHS vectors of the 2nd chunk,
starting at index 2. We add a fully dense SV for the RHS columns
in the result chunk; the shared result chunk has an SV = (0, 1, 2,
3, 4, 5) for the RHS columns because there are six valid records
in total in this chunk: two entries from the 2nd chunk and four
entries from the 3rd chunk. Consequently, these two chunks share
the same physical memory, as shown in the rightmost, solid part
of Figure 8. If more result chunks are available, we continue writing
their data into the memory of the current chunk, compacting as
much as possible until it can no longer hold the next chunk. Once
capacity is reached, we output the current chunk and allocate a
new one. Finally, the proposed compacted hash join yields two
result chunks with sizes 7 and 6, resulting in a lower CRF than
the original hash join. This approach utilizes zero-copy techniques
for the LHS vectors and a single gathering operation for the RHS
vectors, enhancing efficiency.

Additionally, the result chunks, with multiple SVs, can be pro-
cessed by the remaining operators in the pipeline. For example,
consider a filter operator applied to a chunk with two SVs, sel1 =

(1, 3, 1, 2) and sel2 = (0, 1, 2, 2), encompassing four tuples. Suppose
the tuples at indices 0, 2, and 3 satisfy the filter criteria and are
retained. This yields a result vector res = (0, 2, 3). To derive the SVs
for the result chunk, we update SVs using sel′1 [𝑖] = sel1 [res[𝑖]] for
𝑖 = 0, 1, 2, producing sel′1 = (1, 1, 2) and sel′2 = (0, 2, 2).

5.3 Overhead of Extended SVs
The compacted hash join benefits from the representation flexibility
provided by the extended SVs. These extended SVs bring minimal
overhead for two reasons. First, the data chunk adds only one ad-
ditional extended SV when it undergoes a hash join probing. At
the sink operator [26] of a pipeline, the data chunk is materialized,

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

Input Chunk

Columns SV

0
1
2
3
4
5
6
7

RHS Columns

Hash Table Buckets

① ② ③

Jo
in

 K
ey

s ProbeProbe

RHS Columns RHS Columns

13

42

21

34

07

89

68

22

1
3
0
1
2
7
/
/

1
3
0
1
2
7
/
/

1
3
/
/
/
/
/
/

1
3
/
/
/
/
/
/

0
1
2
3
4
5
6
/

0
1
2
3
4
5
6
/

0
1
2
3
4
6
7
/

0
1
2
3
4
6
7
/

0
1
/
/
/
/
/
/

0
1
/
/
/
/
/
/

0
1
2
3
4
5
/
/

0
1
2
3
4
5
/
/

LHS Columns We directly write the data of Chunk ③ into the vectors of Chunk ②
② ② & ③

Columns SV Columns SV

① ②

Columns SV

RHS Columns

③ Old Result Chunk Old Result Chunk Old Result Chunk

RHS Columns RHS Columns

0
1
2
7
/
/
/
/

0
1
2
7
/
/
/
/

1
3
/
/
/
/
/
/

0
1
2
3
4
6
7
/

0
1
2
3
4
6
7
/Valid Tuples: Tuples marked by the SV

Referencing Vector: A vector that holds a

reference to data stored in another vector

Real Vector: A vector that directly allocates

and manages its own memory

New Result Chunk With the compacted hash join, ② and ③ share the same Result Chunk①

NextNext

Figure 8: Compacted Vectorized Hash Join - Within each chunk, we use multiple extended SVs to manage columns from various sources.
This approach enables the hash join to compact chunks without any additional cost, thus producing fewer yet larger chunks.

resetting the number of SVs to one. Since a pipeline typically has
few joins, the number of SVs is not likely to become a performance
bottleneck. Second, the data chunk with extended SVs maintains the
same interface as the original design, avoiding the need to redesign
other database components. The only change lies in determining
which SV to use when accessing the column values. An optimiza-
tion is that we can omit the SV from the build side after the hash
join (because it is always fully dense). However, we must bring back
this omitted SV if there are subsequent hash joins in the pipeline
because the columns associated with the omitted SV will be on the
probe side for the next join.

5.4 Column Compression
The data chunk design, consisting of several data vectors and a
variable number of extended SVs, seamlessly integrates with the in-
memory compressed data format during execution [1, 25]. Column
compression is widely used and effective for data storage as it
reduces storage size and accelerates I/O when loading data into
memory. When loading the compressed data into memory, modern
databases generate an in-memory data format during execution.
This allows for a more compressed representation and potentially
enables compressed execution throughout the system.

For example, consider a table where one of its columns is en-
coded using a dictionary. As we load this table into memory chunk
by chunk, the vector representing the compressed column adopts
dictionary encoding, referred to as a dictionary vector. In this sce-
nario, the extended SV can function as the dictionary codes for
this vector, with the dictionary serving as the vector data. Figure 9
illustrates the differences between two chunks: one without dictio-
nary encoding (left) and the other with (right). The chunk on the
left contains three uncompressed columns, while the one on the
right encodes one column using a dictionary. As a result, the chunk
on the right consists of two flat vectors and one dictionary vector.
Note that the dictionary vector cannot logically represent elements
exceeding the chunk size, aiming at enhancing cache efficiency.

D
ict. C

o
d
es / S

V

0
1
2
3
4
5
6
7

0
1
3
3
2
2
1
2

0
1
3
3
2
2
1
2

D
ictio

n
ary

Dictionary VectorFlat Vectors

Data Chunk with Dictionary EncodingData Chunk

Columns SV

0
1
2
3
4
5
6
7

Figure 9: Compressed Vector in the Chunk - The chunk design
can seamlessly integrate with column compression.

5.5 Logical and Learning Compaction
The proposed hash join method is specifically designed to compact
small result chunks originating from the same probing chunk, as
it requires the chunks to be compacted to share identical LHS vec-
tors. The proposed hash join and the traditional hash join are both
chunk-reducing operators, but the former has a lower CRF. The
performance of the compacted hash join is significantly influenced
by the chain lengths in the hash table buckets.

In a Join-style Case, where the operator outputs many reduced
chunks from a single probing chunk, these small chunks become
a performance bottleneck. The proposed hash join effectively ad-
dresses this by “compacting” the small chunks without actually
performing data copying. For this reason, this method is termed
logical compaction. Conversely, in a Filter-style Case, where the
operator outputs only one reduced chunk from a probing chunk, the
proposed hash join does not offer an advantage over the traditional
method and still outputs small chunks. In such cases, we rely on
the learning module described in Section 4 to tackle the issue.

Importantly, the learningmodule is agnostic to the specific imple-
mentation of the hash join operator; it focuses solely on compacting
small chunks produced by the hash join and other chunk-reducing
operators. The integration of the compacted vectorized hash join
with the learning module provides a comprehensive solution to the
compaction problem.

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

5 10 15 20 25 30
Chunk-reducing Factor

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

Join Number: 2, Tuple Length: 100 bytes
No Cpt.
Full Cpt.
Binary Cpt.

Learning Cpt.
Logical Cpt.

5 10 15 20 25 30
Chunk-reducing Factor

0

5

10

15

Join Number: 3, Tuple Length: 100 bytes
No Cpt.
Full Cpt.
Binary Cpt.

Learning Cpt.
Logical Cpt.

5 10 15 20 25 30
Chunk-reducing Factor

0

5

10

15

20

Join Number: 4, Tuple Length: 100 bytes
No Cpt.
Full Cpt.
Binary Cpt.

Learning Cpt.
Logical Cpt.

Figure 10: Execution Time vs. Chunk-Reducing Factor - This figure shows the execution times for various compaction methods across
different CRFs with join numbers 2, 3, and 4. The tuple length of the probing table is fixed at 100 bytes by adjusting its string column 𝑠𝑡𝑟 .

32 200 400 600 800 1000
Tuple Length (bytes)

0

10

20

30

Ex
ec

ut
io

n
Ti

m
e

(s
) No Cpt.

Full Cpt.
Binary Cpt.

Learning Cpt.
Logical Cpt.

Figure 11: Execution Time vs. Tuple Length - With a join num-
ber of 4 and a CRF of 8, we vary the tuple length of the table 𝑅 to
demonstrate the robustness of Learning Compaction.

6 Microbenchmark Evaluation
We now evaluate the proposed compaction learning module, re-
ferred to as Learning Compaction, and the compacted vectorized
hash join, referred to as Logical Compaction.

For the evaluation, we implement a vectorized execution engine
supporting scan, filter, and hash join operators. The default size of
a full chunk is set to 2048. During execution, this engine retrieves
a data chunk from an in-memory data collection and processes it
through a pipeline of operators. For filtering, we utilize a selection
vector to mark valid tuples, and for hash joins, we implement a
vectorized version similar to that in DuckDB. This hash join utilizes
a chaining hash table with a load factor of 0.5. The load factor is
defined as the ratio of the number of tuples to the number of buckets
in the hash table. This vectorized execution engine is implemented
in C++ without any explicit SIMD instructions.

Baselines.We compare our solutions to three other compaction
methods: (1) No Compaction; (2) Apache Data Fusion’s Full Com-
paction [24]; and (3) DuckDB’s Binary Compaction. No Compaction
is the simplest approach, where no chunk undergoes compaction.
Full Compaction maintains a tuple buffer after each filter and hash
join operator. It pushes any non-full chunk into this buffer and
outputs a full chunk if there are enough tuples in the buffer. Binary
Compaction also utilizes a tuple buffer but only compacts chunks
containing ≤ 128 tuples, and it outputs a near-full chunk if there
are ≥ 1920 tuples in the buffer.

Experimental Setup. We run experiments using our in-house
server with 512 GB of DDR5 main memory at 4800 MHz and a 1 TB
Intel® SSD D5-P5530. The server is equipped with two sockets of
Intel® Xeon® 8474C 2.1 GHz processors (48 cores), each capable of
supporting 96 threads. We use Debian GNU/Linux 12 and GCC 12.2

with -O3 enabled. Experiments are conducted with a single thread
unless stated otherwise.

6.1 Synthetic Experiment
We first evaluate these compaction methods using a left-deep join
query comprising a probing side table 𝑅 and 𝑘 building side tables
𝑆1, . . . , 𝑆𝑘 . The table𝑅 includes the columns (𝑖𝑑1, . . . , 𝑖𝑑𝑘 , 𝑠𝑡𝑟), while
each table 𝑆𝑖 includes the columns (𝑖𝑑𝑖 ,𝑚𝑖𝑠𝑐). The data type of
column 𝑖𝑑𝑖 is a 64-bit integer, and the data types of 𝑠𝑡𝑟 and𝑚𝑖𝑠𝑐

are strings. By default, values in the column 𝑚𝑖𝑠𝑐 are fixed at 8
bytes, making each tuple in 𝑆𝑖 16 bytes in length. The table 𝑅 has 20
million tuples, while each table 𝑆𝑖 has 2 million tuples. The query
plan performs a natural join of 𝑅 with 𝑆1 through 𝑆𝑘 . For each join,
the resulting output relation has the same cardinality as the probing
relation, neutralizing the impact of intermediate result sizes. We
vary the join number 𝑘 from 2 to 4 and the chunk-reducing factor
𝑟 from 2 to 32 in this experiment. We record the time of query
execution, excluding the time spent building the hash table.

Figure 10 shows the results. First, Logical Compaction is the
most efficient among these methods, providing a speedup of up
to 3× compared to Binary Compaction. This can be attributed to
its ability to compact most chunks without incurring data-copying
costs, thereby adopting a more aggressive compaction policy. Sec-
ond, when the join number is two, Learning Compaction exhibits
significantly lower execution latency (by 2×) compared to Binary
Compaction. This is because Learning Compaction adopts a more
conservative compaction policy in this scenario. Although Binary
Compaction compacts more chunks, it does not yield substantial
benefits. However, for deeper pipelines or higher CRFs, the perfor-
mance of Learning Compaction and Binary Compaction tends to
converge. This is because deeper pipelines or higher CRFs necessi-
tate a more aggressive compaction policy, which is precisely what
Binary Compaction offers. Finally, Full Compaction proves to be
more stable than the no-compaction policy. This is because the cost
of compaction is generally much lower than the interpretation cost.
Consequently, in scenarios involving deep pipelines and high CRFs,
No Compaction suffers from higher interpretation costs.

6.2 The Compaction Trade-off
We then explore the trade-off between compaction cost and in-
terpretation cost by varying the tuple length. We considered the
following pipeline of joining five tables: Scan(𝑅) –> Join(𝑅, 𝑆1)
–> Join(𝑅, 𝑆2) –> Join(𝑅, 𝑆3) –> Join(𝑅, 𝑆4)with 𝑅 having

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

0.0

0.2

0.4

α1 α2

Case 1

0.85
α3

0 32 64 12
8

25
6

38
4

51
2

76
8

10
24

0.0

0.2

0.4

0 32 64 12
8

25
6

38
4

51
2

76
8

10
24 0 32 64 12

8
25

6
38

4
51

2
76

8
10

24

Case 2

0.99

Threshold Values

Pe
rc

en
ta

ge
s

Figure 12: Distribution of Learned Thresholds - We execute
a left-deep query of joining tables 𝑅, 𝑆1, 𝑆2, and 𝑆3. In case 1, the
tuple length of table 𝑆2 is 16 bytes, and in case 2, it is 1000 bytes.

20 million tuples and each of 𝑆𝑖 having 2 million tuples. Each tuple
in 𝑆𝑖 has a fixed length of 16 bytes. We vary the tuple length in
𝑅 from 32 bytes to 1000 bytes to show the performance impact of
different compaction costs. We set the CRF to 8 in this experiment.

Figure 11 demonstrates the impact of tuple length on compaction
strategies. For tuples under 600 bytes, Full Compaction is more ef-
fective than No Compaction. However, for tuples over 600 bytes,
No Compaction performs better because of the high costs of copy-
ing long tuples. While the benefits of compaction remain consis-
tent across different tuple lengths, the cost of compaction becomes
higher. Additionally, Learning Compaction consistently shows lower
latency than Binary Compaction for longer tuples. This is because
Binary Compaction, which excels when interpretation costs dom-
inate, applies aggressive strategies even when compaction costs
are high, leading to suboptimal performance. In contrast, Learning
Compaction effectively balances the compaction trade-offs, result-
ing in superior performance. Furthermore, as expected, tuple length
has little effect on Logical Compaction.

6.3 Distribution of Learned Thresholds
We then show that Learning Compaction indeed learns something
useful across diverse workloads. Using the same left-deep query
as described in Section 6.1 with 𝑘 = 3 and a CRF of 𝑟 = 8, we join
four tables 𝑅, 𝑆1, 𝑆2, and 𝑆3. Comparing two scenarios, in the first
case, tuple lengths for 𝑅, 𝑆1, 𝑆2, and 𝑆3 are 32, 16, 16, and 16 bytes,
respectively. In the second case, tuple lengths are 32, 16, 1000, and
16 bytes. Both cases involve three hash join operators, with the 𝑖-th
operator joining its probing table with the building table 𝑆𝑖 and
employing a threshold 𝛼𝑖 for compaction. We execute the queries
with Learning Compaction and record the chosen arms for each 𝛼𝑖 .

Figure 12 shows the learned distribution for the two scenarios.
First, both cases prioritize selecting 𝛼3 = 0 because it is for the last
join with no subsequent operators. Second, we observe the trend
𝛼1 ≥ 𝛼2 ≥ 𝛼3, where 𝛼𝑖 is the most frequent chosen value for
𝛼𝑖 . The trend aligns with the conclusions drawn from our simula-
tions in Section 3.4: the position of an operator within a pipeline
influences its compaction policy because of the pipeline-level gain.
Third, in case 2, the compaction learner adapts by employing a more
aggressive compaction policy for the first join, thereby alleviating
compaction pressure for the subsequent join. Specifically, its 𝛼1
is larger, and 𝛼2 is smaller compared to Case 1. This adjustment
is prompted by the presence of longer tuples in table 𝑆2, which
leads to increased compaction costs for the 2nd and 3rd joins. This

1 2 4 8 16 32 64
Number of Columns

0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
Ti

m
e

(s
) Evaluate Expression

Update Sel Vectors

1 2 4 8 16 32 64
Number of Columns

Ex
ec

ut
io

n
Ti

m
e

(s
) Evaluate Expression

Update Sel Vectors

Figure 13: Overhead of Updating Additional SVs - We provide
a breakdown of the filter execution. The left figure represents the
single SV chunk, while the right figure represents the chunk where
each column has its own SV.

2−4 2−3 2−2 2−1 20 21 22 23

Load Factor

10

20

30

40

Ex
ec

ut
io

n
Ti

m
e

(s
)

Join Number: 4, Payload Length: 100 bytes
No Cpt.
Full Cpt.
Binary Cpt.

Learning Cpt.
Logical Cpt.

Figure 14: Load Factor vs. Execution Time - A large hash table
can reduce the effect of hash collisions. With chaining hash tables,
load factor = number of inserted tuples / number of buckets.

comparison shows how each operator can collaborate to estab-
lish a globally optimal compaction policy. Consequently, in case 2,
Learning Compaction is 1.76× faster than Binary Compaction.

6.4 Overhead of Selection Vectors
We then show that even though the compacted vectorized hash
join introduces additional SVs, they bring minimal overhead. We
execute a filter on a table 𝑅 with 𝑘 columns (𝑖𝑑1, · · · , 𝑖𝑑𝑘), where
the data type of each column is a 64-bit integer. The column 𝑖𝑑1
contains uniformly distributed values between 0 and 100. The filter
query is SELECT * FROM 𝑅 WHERE 𝑖𝑑1/100 < 0.3, with a selectivity
of 0.3. We consider two chunk formats, both containing 𝑘 vectors
for data. The first format holds one SV for all columns, while in the
second format, each column holds an SV. Thus, the filter operator
needs to update all SVs for the second chunk format. Since a filter
is a very lightweight operator in databases, this experiment can
effectively reflect the overhead of multiple SVs. Figure 13 shows
that updating SVs becomes a bottleneck when their number exceeds
eight. Therefore, it is safe to have ≤ 8 SVs in a chunk. Since the
number of SVs increases by one only when passing through a hash
join operator, and queries with numerous joins are rare, the time
cost of updating SVs will not be a performance bottleneck.

6.5 The Chain in Hash Table Buckets
A hash table bucket may have a chain of length > 1 either due
to hash collisions or multiple tuples in the build table with the
same key. We show that the impact of hash collisions decreases
with increasing hash table size. Following the setup described in
Section 6.1, we set the join number 𝑘 = 4 and the length of each
tuple in 𝑆𝑖 to 100 bytes. We ensure that each building side table 𝑆𝑖
has 2 million tuples. And vary the number of buckets in each hash

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

4 64 1K 16K 256K 4M
Block Size

0

10

20

30

40

Ex
ec

ut
io

n
Ti

m
e

(s
)

Join Number: 3, CRF = 8
No Cpt.
Full Cpt.
Logical Cpt.

4 64 1K 16K 256K 4M
Block Size

0

10

20

30

40
Join Number: 3, CRF = 16

No Cpt.
Full Cpt.
Logical Cpt.

Figure 15: Varying the Data Chunk Sizes - We show the robust-
ness of Logical Compaction by varying the data chunk sizes.

table, such that the load factor ranges from 2−4 to 23. Figure 14
shows that we can reduce the effect of hash collisions by setting
a load factor of less than 1 for the hash table. Therefore, the load
factor of the hash table is set to 0.5 in our experiments.

6.6 Block Sizes
We then show the effectiveness of Logical Compaction over differ-
ent data chunk sizes. We consider the same pipeline as in Section 6.1
by setting join number 𝑘 = 3, i.e., Scan(𝑅) –> Join(𝑅, 𝑆1) –>
Join(𝑅, 𝑆2) –> Join(𝑅, 𝑆3)with 𝑅 having 20 million tuples and
each of 𝑆𝑖 having 2 million tuples. The tuple lengths of 𝑅, 𝑆1, 𝑆2, 𝑆3
are 32, 16, 16 and 16 bytes, respectively. We vary the chunk sizes
to measure the execution time. We consider No Compaction, Full
Compaction, and Logical Compaction in this experiment because
they do not have pre-defined parameters that depend on the block
size. Figure 15 shows the result, which agrees with the conclusion
that the optimal data chunk size is in a few thousand tuples [6].
It also shows that Logical Compaction reduces the performance
degradation caused by small data chunks, i.e., it flattens the curve.

6.7 Mixed Filter & Join Compaction Cases
Logical Compaction is designed for joins while Learning Com-
paction is mostly effective on filters. We combine them and refer
to this combination approach as Smart Compaction. We create a
pipeline containing both filters and joins and then vary the filter
selectivities to show their relative significance. We first apply a
filter on table 𝑅’s column 𝑖𝑑1, and then join the filtered results with
table 𝑆1, 𝑆2 and 𝑆3. The tuple length of 𝑅, 𝑆1, 𝑆2 and 𝑆3 are 32, 2000,
16, and 16 bytes, respectively. The query pipeline is Scan(𝑅) –>
Filter(𝑅) –> Join(𝑅, 𝑆1) –> Join(𝑅, 𝑆2) –> Join(𝑅, 𝑆3).
For each join, its CRF is set to 5. Table 𝑅 contains 200 million tuples,
and each 𝑆𝑖 has 2 million tuples.

Figure 16 shows the execution time of each method, which are
normalized by that of Smart Compaction. When the filter selectivity
is low, the pipeline presents a Filter & Join style compaction case.
Both Logical Compaction and the Learning Compaction can only
handle this case partially. But their combination, Smart Compaction,
can tackle the mixed-style case effectively. When the filter selectiv-
ity is high, the pipeline presents a pure Join-style case. Thus, Smart
Compaction has the same performance as Logical Compaction.

7 Full DBMS Evaluation
In this section, we integrated our solutions intoDuckDB (v0.8.1) [36]
and measured the end-to-end performance using three benchmarks:

2% 4% 6% 8% 10% 12% 14% 16%
Filter Selectivity

1.0
1.2
1.4
1.6
1.8

No
rm

. E
xe

cu
tio

n
Ti

m
e Mixed Filter & Join Compaction Cases

Binary Cpt.
Learning Cpt.

Logical Cpt.
Smart Cpt.

Figure 16: Filter-style vs. Join-style Case - We adjust the filter
selectivity to switch from a Filter & Join style case to a pure Join-
style case. Logical Cpt. is effective only for the Join-style case.

the Join Order Benchmark (JOB) [27], TPC-H [11] and TPC-DS [10].
DuckDB is a state-of-the-art, in-process OLAP database system. It
contains a columnar-vectorized query execution engine that is
specifically designed to handle OLAP workloads. We integrated the
compaction learning module (Learning Cpt.) into the system and
replaced the default hash join operator with our compacted version
(Logical Cpt.). We refer to this integrated approach as Smart Cpt.

The JOB benchmark is based on real data, specifically the IMDB
dataset [41], comprising 113 multi-join queries that offer a challeng-
ing, varied, and authentic workload. In contrast, TPC-H is based on
synthetic data, where the benchmark requires that data for database
columns be generated from a uniform distribution. Although some
columns in TPC-DS are generated using skewed distributions, the
dataset still does not utilize real data.

7.1 Performance Overview
We present a performance overview of all compaction methods
across three benchmarks in DuckDB, with the scale factors for TPC-
H and TPC-DS set to 10. Each benchmark is run on a single thread
using DuckDB’s internal benchmark tools. Given the extensive
number of queries in each benchmark, we measure and sum the
total execution times. Figure 18 illustrates that our proposed Smart
Compaction consistently and significantly outperforms both the
No Compaction and DuckDB’s default method, Binary Compaction,
across all benchmarks. Specifically, in the JOB benchmark, Smart
Compaction boosts DuckDB’s performance by up to 10%.

Table 1: Profile of Hash Join Operators - We collect the runtime
statistics for all three benchmarks executed by DuckDB default.

Avg. Chunk Size Avg. # of Chunks Smart Cpt. Speedup

TPC-H 125.58 3.16 1.13×
TPC-DS 219.58 397.4 1.21×
JOB 54.05 689.6 1.32×

Additionally, No Compaction performs the worst. Full Com-
paction and Binary Compaction methods have similar performance.
This indicates that the compaction trade-off is predominantly in-
fluenced by interpretation costs, similar to Case 3 in Figure 5. We
note that standard benchmarks may not accurately represent real-
world workloads [5, 15]. For example, none of them include tables
with large tuples, which leads to high compaction costs. Despite
these considerations, the Smart Compaction performs well. We
then explore the underlying reasons in the following sections.

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

JOB-08c JOB-08d JOB-19d JOB-16b JOB-09d JOB-17f JOB-17d JOB-17b JOB-17c JOB-17e JOB-11d
0.0

2.5

5.0

7.5

10.0

Ex
ec

ut
io

n
Ti

m
e

(s
) 9.
26

7.
23

5.
39

4.
47

4.
14

3.
38

3.
20

3.
14

3.
12

1.
91

1.
10

7.
64

5.
87

3.
86

3.
57

2.
68

1.
85

1.
74

1.
69

1.
69

1.
41

0.
77

7.
22

5.
29

3.
76

3.
53

2.
64

1.
86

1.
71

1.
66

1.
65

1.
37

0.
71

5.
23

4.
36

2.
30 2.
47

1.
90

1.
38

1.
34

1.
27

1.
28

1.
05

0.
47

No Cpt. Full Cpt. Binary Cpt. Smart Cpt.

Figure 17: Execution Time for JOB Queries with Hash Join Bottlenecks - This figure illustrates the impact of different compaction
methods on the performance of selected JOB queries, all of which feature hash join bottlenecks that require compaction.

TPC-H (SF= 10)25

30

35

40

45

50

To
ta

l T
im

e
(s

) 44.5
41.7 41.2

39.2

TPC-DS (SF= 10)100

120

140

160

180 174.4
159.4 153.4

143.6

JOB60

80

100

120

140 140.2

120.9 117.7
105.8

No Cpt. Full Cpt. Binary Cpt. Smart Cpt.

Figure 18: Benchmarks Overview - We compare the total execu-
tion times for all compaction methods on three benchmarks.

7.2 Benchmark Analysis
We perform an in-depth analysis across three benchmarks to iden-
tify the queries that benefit most from compaction strategies. By
profiling each hash join operator, we evaluate two key metrics for
every benchmark: (1) the average chunk size at runtime, derived
from the size of all result chunks generated by hash joins, indi-
cating the degree of chunk reduction; and (2) the average result
chunk number, computed as the ratio of result chunk number to
input chunk number for each hash join operator, illustrating the
number of child chunks generated per probing chunk. As shown
in Table 1, the speedup provided by Smart Compaction is closely
correlated with these two metrics. Smaller chunk sizes and larger
chunk numbers correspond to greater advantages offered by Smart
Compaction. For instance, in the JOB benchmark, the average chunk
size is only 54, and long bucket chains result in the generation of
≥ 600 child chunks from a single input chunk.

Therefore, we conclude that a query benefits from chunk com-
paction if it includes at least one hash join operator that: (1) con-
stitutes a major bottleneck in the query execution, accounting for
at least 10% of the total execution time; and (2) on average, gener-
ates many (≥ 50) result chunks from a single input chunk. After
identifying all such hash join operators across benchmarks, we
select queries containing at least one qualifying operator. This pro-
cess identifies 12 queries: 11 from JOB, 1 from TPC-DS, and none
from TPC-H, reflecting the performance improvements seen in each
benchmark. Among these, Smart Compaction offers a geometric
mean performance enhancement of 34% over the standard DuckDB
that employs Binary Compaction.

Figure 17 displays the selected queries from the JOB benchmark.
Notably, query 19d achieves the highest speedup in our experiments,
reaching up to 2.34× – a 63% improvement over Binary Compaction.
Additionally, Full Compaction approaches the performance of Bi-
nary Compaction, because these queries have high CRFs, resulting
in interpretation costs dominating the compaction trade-off. Smart

Compaction provides distinct advantages over other methods be-
cause 1) it greatly reduces the compaction cost, and 2) estimates a
specified compaction threshold for each CRO.

7.3 Case Study
We then conduct a detailed analysis of two queries, JOB 19d and
TPC-H Q9, to understand the source of benefits, focusing on both
the compute cost and the compaction cost.

For each hash join operator, Figure 19 displays the average num-
ber of child chunks, along with the average size of these child
chunks. These child chunks are then compacted through physical
memory copying before being passed to the next operator. We also
record the total time spent on probing and chunk compaction.

7.3.1 JOB 19d. Query 19d from the JOB benchmark involves join-
ing 10 tables, resulting in 9 hash join operators. DuckDB optimizes
this query into a right-deep query plan, where most pipelines con-
sist of only one join operator. This is reasonable because the JOB
benchmark follows a well-defined relational schema, resulting in a
joined result table smaller than other base tables. Typically, hash
tables are built on the smaller tables, and since the build side is on
the right, the entire plan adopts a right-deep style [27].

In this query, the hash join operators exhibit a high CRF and
long bucket chains. Traditional hash join operators, in Binary Com-
paction, produce many small result chunks. The compacted hash
join, utilized in Smart Compaction, effectively decreases the num-
ber of result chunks and increases their sizes, offering significant
improvements over traditional hash joins.

The 6th hash join operator is the only one whose average chunk
size decreases when using Smart Compaction, compared to the
default Binary Compaction. This anomaly occurs because: 1) this
hash join operator has a bucket chain length of one, presenting
a filter-style compaction case, as introduced in Section 5.5; and
2) the input chunks to the 6th operator are smaller when Smart
Compaction is employed, as the preceding operator compacts fewer
chunks before the 6th hash join compared to Binary Compaction.

7.3.2 TPC-H Q9. Most queries in the TPC-H benchmark have joins
with relatively short chains. Among these, Query 9 exhibits the
longest chain. Query 9 comprises five hash join operators, with
only one of them benefiting from Smart Compaction, achieving a
speedup of 1.18×. For the remaining joins, both Smart and Binary
Compaction exhibit similar performance. This result is expected
because the TPC-H benchmark’s average chain length is only 3.16.
Notably, Smart Compaction reduces the number of results chunks
to one for all hash joins, demonstrating its effectiveness. Our ex-
periment reveals a significant gap in data distributions between

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

1 2 3 4 5 6 7 8 9
Hash Join Operator

0

250

500

750

1000

1250

Av
g.

 C
hi

ld
 C

hu
nk

 S
ize

1.
4 84

.8

19
.4

1.
2

4.
6

34
9.

1

11
.3

40
.8

29
2.

7

83
7.

6

26
6.

0

95
4.

9

50
7.

2

54
1.

1

25
2.

8

34
9.

9

37
9.

6

90
4.

2

JO
B

19
d

Binary Cpt.
Smart Cpt.

1 2 3 4 5 6 7 8 9
Hash Join Operator

0

50

100

150

200

Av
g.

 #
 o

f C
hi

ld
 C

hu
nk

s

81
2.

8
1.

0

79
.3

49
9.

5
13

5.
9

1.
0 18

.1

9.
3

3.
1

1.
4

1.
0

1.
6

1.
2

1.
2

1.
0

1.
0

1.
0

1.
0

Binary Cpt.
Smart Cpt.

1 2 3 4 5 6 7 8 9
Hash Join Operator

0.0

0.5

1.0

1.5

Jo
in

 E
xe

cu
te

 T
im

e
(s

)

1.
24

0.
05

0.
84

0.
26

0.
07

0.
00 0.

14

0.
06

0.
04

0.
35

0.
03

0.
48

0.
15

0.
03

0.
00 0.

11

0.
06

0.
04

Binary Cpt.
Smart Cpt.

1 2 3 4 5
Hash Join Operator

0

1000

2000

3000

Av
g.

 C
hi

ld
 C

hu
nk

 S
ize

14
.5

98
.2

44
.8 30

9.
5

20
40

.8

11
1.

4 44
5.

3

11
1.

4

41
0.

1

20
40

.8

TP
C-

H
 Q

9 Binary Cpt.
Smart Cpt.

1 2 3 4 5
Hash Join Operator

0
2
4
6
8

10

Av
g.

 #
 o

f C
hi

ld
 C

hu
nk

s

7.
7

4.
5

2.
5 3.

8

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

Binary Cpt.
Smart Cpt.

1 2 3 4 5
Hash Join Operator

0
1
2
3
4
5

Jo
in

 E
xe

cu
te

 T
im

e
(s

)

3.
48

0.
72

0.
08

0.
02

0.
00

2.
95

0.
73

0.
07

0.
02

0.
00

Binary Cpt.
Smart Cpt.

Figure 19: Case Study – A Profile of Joins - For each hash join operator, we measure the average size of output chunks, the average
number of child chunks generated by a single input chunk, and the execution time. We select two representative queries from a real-data
benchmark (JOB) and a synthetic benchmark (TPC-H).

synthetic benchmarks (TPC-H, TPC-DS) and real-data benchmarks
(JOB), which substantially impacts the compaction problem.

Summary. This case study yields three key conclusions. First,
Real-data workloads (JOB) have significantly smaller average chunk
sizes than synthetic benchmarks (TPC-H). Second, small chunks
are a major latency bottleneck, especially for hash join operations.
Third, Smart Compaction outperforms Binary Compaction by reduc-
ing data-copying overhead, using adaptive compaction thresholds
at runtime, and the compacted vectorized hash join.

7.4 Relative Significance
We then show the relative significance of proposed techniques by
categorizing queries into four groups: 1) benefiting only from Logi-
cal Compaction; 2) benefiting only from Learning Compaction; 3)
benefiting from both, and 4) benefiting from neither. As described
in Section 6.7, Logical Compaction is designed for joins while Learn-
ing Compaction is mostly effective on filters. Figure 20 shows the
results. For example, TPC-H Q19, a filter-style query, has two filters
(with selectivities of 0.05% and 14%). Its join operators produce
near-full chunks, and thus Logical Compaction is ineffective. In
join-style queries, Smart Compaction performs similarly to Logical
Compaction, as the selective joins, not filters, present a performance
bottleneck. In mixed-style queries, Smart Compaction significantly
outperforms both individual techniques, confirming the need to
combine them to handle this case effectively, consistent with our
analysis in Section 6.7. Finally, some queries gain no benefit from
compaction, due to the absence of selective filters and joins.

8 Discussion
Most modern analytical database engines today adopt the vector-
ized execution model (e.g., ClickHouse [40], DataFusion [24], Pho-
ton [4], SnowFlake [12], and Velox [32]). Data chunk compaction
is a general problem for these engines. For example, Velox has an
open issue on optimizing the performance with small chunks [17].
DataFusion handles this problem by introducing a pre-configured
switch to select between Full and No Compaction [31].

JOB-2c TPCH-Q3 TPCH-Q19
0.6
0.8
1.0
1.2

No
rm

. T
im

e
Filter-style Case

JOB-17b JOB-17c TPCH-Q9
0.6
0.8
1.0
1.2 2.

48

2.
44

Mixed-style Case

TPCH-Q4 TPCH-Q13 TPCH-Q20
0.6
0.8
1.0
1.2

No
rm

. T
im

e

Compaction Not Beneficial

JOB-9d JOB-11d JOB-19d
0.6
1.0
1.4
1.8 2.

18

2.
33

2.
34

Join-style Case

No Cpt. Learning Cpt. Logical Cpt. Smart Cpt.

Figure 20: Relative Significance of Learning and Logical Com-
paction - We select queries to show various compaction cases.
Execution time of each query is normalized by that of Smart Cpt.

The vectorized hash join algorithms in many systems [8, 24, 32,
46] were derived from MonetDB/X100 [6, 47]. Therefore, our pro-
posed Logical Compaction also applies to these implementation
variants. Systems such as DataFusion and CockroachDB copy both
the probe- and build-side columns from the input chunks to the
result chunks when performing the hash join [19, 20]. This is equiv-
alent to the Full Compaction strategy in our paper. On the other
hand, DuckDB avoids copying the probe-side columns by including
references to the input chunks [21]. Although this approach signif-
icantly reduces the memory copy cost, the side-effect (identified in
this paper) is that it can easily generate under-full chunks. Logical
Compaction solves the chunk compaction problem for vectorized
hash joins so that the “zero-copy” approach consistently exhibits
performance advantages over Full Compaction.

The applicability of Logical Compaction is independent of whether
the table is partitioned because partitioning (e.g. radix partitioning)
happens before executing the vectorized hash join. It is also inde-
pendent of the hash table types (e.g., chaining vs. open-addressing)
because Logical Compaction is carried out on the already gath-
ered matched tuples. Note that if the data chunk implementation

SIGMOD’24, June 03–05, 2018, Woodstock, NY Yiming Qiao and Huanchen Zhang

uses bitmaps instead of selection vectors (SVs), Logical Compaction
must convert the bitmaps to SVs (this can be done efficiently using
vectorized instructions) before the compaction.

9 Conclusion
In this paper, we formalized the chunk compaction problem, which
involves balancing data copying costs and interpretation costs in
vectorized query execution. We proposed learning compaction,
which enables the dynamic adjustment of compaction policies dur-
ing runtime. Additionally, we introduced logical compaction that
can compact data chunks without actual data copying for vector-
ized hash joins. Our investigation reveals that learning compaction
effectively addresses the when to compact challenge, while logical
compaction improves how to compact. We integrated both methods
into DuckDB and evaluated their performance against JOB, TPC-H,
and TPC-DS. The results show that our proposed techniques achieve
up to 63% performance improvement over the default DuckDB.

Data Chunk Compaction in Vectorized Execution SIGMOD’24, June 03–05, 2018, Woodstock, NY

References
[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating com-

pression and execution in column-oriented database systems. In Proceedings of
SIGMOD’16. ACM, 671–682.

[2] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That is the Join Question in a Real System. In Proceedings of
SIGMOD’21. ACM, 168–180.

[3] Claude Barthels, Gustavo Alonso, Torsten Hoefler, Timo Schneider, and Ingo
Müller. 2017. Distributed Join Algorithms on Thousands of Cores. Proceedings of
VLDB’17 10, 5 (2017), 517–528. https://doi.org/10.14778/3055540.3055545

[4] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson,
Arvind Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa
Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van
Bussel, Herman Van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia.
2022. Photon: A Fast Query Engine for Lakehouse Systems. In Proceedings of
SIGMOD’22. ACM, 2326–2339.

[5] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In Pro-
ceedings of TPCTC’13erformance Characterization and Benchmarking - 5th TPC
Technology Conference, TPCTC 2013, Trento, Italy, August 26, 2013, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 8391). Springer, 61–76.

[6] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Proceedings of CIDR’05. www.cidrdb.org, 225–237.

[7] Maximilian Böther, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. 2023.
Analyzing Vectorized Hash Tables Across CPU Architectures. Proceedings of
VLDB’23 16, 11 (2023), 2755–2768.

[8] Angela Chang. 2019. 40x faster hash joiner with vectorized execution. https:
//www.cockroachlabs.com/blog/vectorized-hash-joiner/

[9] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
Cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-Ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil Mckay, Selcuk Aya, Vera
Lychagina, and Brett Elliott. 2019. Procella: Unifying serving and analytical data
at YouTube. Proceedings of VLDB’19 12, 12 (2019), 2022–2034.

[10] The Transaction Processing Council. 2021. TPC-DS Benchmark (Version 3.2.0).
[11] The Transaction Processing Council. 2022. TPC-H Benchmark (Version 3.0.1).
[12] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of SIGMOD’16. ACM, 215–
226.

[13] Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. Knowl. Data Eng. 6, 1 (1994), 120–135.

[14] Philipp M. Grulich, Aljoscha P. Lepping, Dwi Prasetyo Adi Nugroho, Varun
Pandey, Bonaventura Del Monte, Steffen Zeuch, and Volker Markl. 2023. Towards
Unifying Query Interpretation and Compilation. In Proceedings of CIDR’23.

[15] Andrey Gubichev and Peter A. Boncz. 2014. Parameter Curation for Benchmark
Queries. In Proceedings of TPCTC’14Performance Characterization and Bench-
marking. Traditional to Big Data - 6th TPC Technology Conference, TPCTC 2014,
Hangzhou, China, September 1-5, 2014. Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 8904). Springer, 113–129.

[16] Tim Gubner and Peter A. Boncz. 2021. Charting the Design Space of Query
Execution using VOILA. Proceedings of VLDB’21 14, 6 (2021), 1067–1079.

[17] Optimize Operator’s Performance When Vector has Low Selectivity. 2023. https:
//github.com/facebookincubator/velox/issues/7801

[18] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,
and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in Column-
oriented Database Architectures. IEEE Data Eng. Bull. 35, 1 (2012), 40–45.

[19] Apache DataFusion Hash Join Implementation. 2024. https://github.com/apache/
datafusion/blob/f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/
physical-plan/src/joins/utils.rs#L1223

[20] CockroachDB Hash Join Implementation. 2024. https://github.com/cockroachdb/
cockroach/blob/67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/
colexecjoin/hashjoiner.go#L631C3-L631C16

[21] DuckDB Hash Join Implementation. 2024. https://github.com/duckdb/
duckdb/blob/e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_
hashtable.cpp#L928

[22] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter A. Boncz. 2018. Everything You Always Wanted to Know About Compiled
and Vectorized Queries But Were Afraid to Ask. Proceedings of VLDB’18 11, 13
(2018), 2209–2222.

[23] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, Anthony D. Nguyen,
Andrea Di Blas, Victor W. Lee, Nadathur Satish, and Pradeep Dubey. 2009. Sort
vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs. Pro-
ceedings of VLDB’09 2, 2 (2009), 1378–1389.

[24] Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Mehmet Ozan
Kabak, Liang-Chi Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A
Fast, Embeddable, Modular Analytic Query Engine. In Proceedings of SIGMOD’24.
ACM, 5–17.

[25] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation. In Proceedings of SIGMOD’16.
ACM, 311–326.

[26] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In Proceedings of SIGMOD’14. ACM, 743–754.

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kem-
per, and Thomas Neumann. 2015. How Good Are Query Optimizers, Really?
Proceedings of VLDB’15 9, 3 (2015), 204–215.

[28] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
Mosha Pasumansky, and Jeff Shute. 2020. Dremel: A Decade of Interactive SQL
Analysis at Web Scale. Proceedings of VLDBV’20 13, 12 (2020), 3461–3472.

[29] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed Opera-
tor Fusion for In-Memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together At Last. Proceedings of VLDB’17 11, 1 (2017), 1–13.

[30] Amadou Ngom, Prashanth Menon, Matthew Butrovich, Lin Ma, Wan Shen Lim,
Todd C. Mowry, and Andrew Pavlo. 2021. Filter Representation in Vectorized
Query Execution. In Proceedings of DaMoN@SIGMOD’21. ACM, 6:1–6:7.

[31] Configuration Settings of DataFusion. 2024. https://datafusion.apache.org/user-
guide/configs.html

[32] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified
Execution Engine. Proceedings of VLDB’22 15, 12 (2022), 3372–3384.

[33] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of SIGMOD’15.
ACM, 1493–1508.

[34] Orestis Polychroniou and Kenneth A. Ross. 2019. Towards Practical Vectorized
Analytical Query Engines. In Proceedings of DaMoN@SIGMOD’19. ACM, 10:1–
10:7.

[35] Mark Raasveldt and Hannes Mühleisen. 2016. Vectorized UDFs in Column-Stores.
In Proceedings of SSDBM’16. ACM, 16:1–16:12.

[36] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of SIGMOD’19. ACM, 1981–1984.

[37] Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. 2013. Micro adaptivity
in Vectorwise. In Proceedings of SIGMOD’13. ACM, 1231–1242.

[38] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More than Just a Column Store. Proceedings of
VLDB’13 6, 11 (2013), 1080–1091.

[39] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In Proceedings of SIGMOD’16.
ACM, 1961–1976.

[40] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey
Milovidov. 2024. ClickHouse - Lightning Fast Analytics for Everyone. Proceedings
of VLDB’24 17, 12 (2024), 3731–3744.

[41] IMDb Data Set. 2024. https://www.imdb.com
[42] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious

Algorithms for Relational Query Processing. In Proceedings of VLDB’94. Morgan
Kaufmann, 510–521.

[43] Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Found. Trends
Mach. Learn. 12, 1-2 (2019), 1–286.

[44] Juliusz Sompolski, Marcin Zukowski, and Peter A. Boncz. 2011. Vectorization vs.
compilation in query execution. In Proceedings of DaMoN@SIGMOD’11. ACM,
33–40.

[45] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J.
O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. 2005.
C-Store: A Column-oriented DBMS. In Proceedings of VLDB’05. ACM, 553–564.

[46] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of SIGMOD’20. ACM, 1493–1509.

[47] Marcin Żukowski et al. 2009. Balancing vectorized query execution with bandwidth-
optimized storage. SIKS.

[48] Marcin Zukowski and Peter A. Boncz. 2012. From x100 to Vectorwise Opportuni-
ties, challenges and things most researchers do not think about. In Proceedings of
SIGMOD’12. ACM, 861–862.

https://doi.org/10.14778/3055540.3055545
https://www.cockroachlabs.com/blog/vectorized-hash-joiner/
https://www.cockroachlabs.com/blog/vectorized-hash-joiner/
https://github.com/facebookincubator/velox/issues/7801
https://github.com/facebookincubator/velox/issues/7801
https://github.com/apache/datafusion/blob/f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/physical-plan/src/joins/utils.rs#L1223
https://github.com/apache/datafusion/blob/f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/physical-plan/src/joins/utils.rs#L1223
https://github.com/apache/datafusion/blob/f7efd2d31adb51a67dc6bfb6d6eae6a525d60482/datafusion/physical-plan/src/joins/utils.rs#L1223
https://github.com/cockroachdb/cockroach/blob/67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/colexecjoin/hashjoiner.go#L631C3-L631C16
https://github.com/cockroachdb/cockroach/blob/67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/colexecjoin/hashjoiner.go#L631C3-L631C16
https://github.com/cockroachdb/cockroach/blob/67e99ebec74c1f6a6dfbf1cc0bca2d255a55f867/pkg/sql/colexec/colexecjoin/hashjoiner.go#L631C3-L631C16
https://github.com/duckdb/duckdb/blob/e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_hashtable.cpp#L928
https://github.com/duckdb/duckdb/blob/e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_hashtable.cpp#L928
https://github.com/duckdb/duckdb/blob/e2b177b759dbb7cabae0c0afd041bb7de2a9e698/src/execution/join_hashtable.cpp#L928
https://datafusion.apache.org/user-guide/configs.html
https://datafusion.apache.org/user-guide/configs.html
https://www.imdb.com

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Vectorized Model
	2.2 Vectorized Hash Join

	3 The Chunk Compaction Problem
	3.1 Motivation
	3.2 Problem Formulation
	3.3 A Near-optimal Greedy Strategy
	3.4 Simulation-Based Analysis

	4 Learning Compaction
	4.1 Multi-Armed Bandits
	4.2 Online Compaction Learning
	4.3 Multi-threading in Learning

	5 Logical Compaction
	5.1 Data Chunk Design
	5.2 Compacted Vectorized Hash Join
	5.3 Overhead of Extended SVs
	5.4 Column Compression
	5.5 Logical and Learning Compaction

	6 Microbenchmark Evaluation
	6.1 Synthetic Experiment
	6.2 The Compaction Trade-off
	6.3 Distribution of Learned Thresholds
	6.4 Overhead of Selection Vectors
	6.5 The Chain in Hash Table Buckets
	6.6 Block Sizes
	6.7 Mixed Filter & Join Compaction Cases

	7 Full DBMS Evaluation
	7.1 Performance Overview
	7.2 Benchmark Analysis
	7.3 Case Study
	7.4 Relative Significance

	8 Discussion
	9 Conclusion
	References

